
International Journal of Innovative Engineering Applications vol. 4, issue 1 (2020)

⁎ Corresponding author.

E-mail address: icsiacag@gmail.com (A. Efe) | ORCID Number : 0000-0002-2691-7517

Received 9 September 2019; Received in revised form 2 December 2019; Accepted 30 April 2020

2587-1943 | © 2020 IJIEA. All rights reserved. Doi: https://doi.org/10.46460/ijiea.617181

International Journal of Innovative Engineering Applications

Journal homepage: https://dergipark.org.tr/ijiea

SECURING VULNERABILITIES IN DOCKER IMAGES

Ahmet Efe*1, Ulaş Aslan2, Aytekin Mutlu Kara2

1 Internal Auditor at Ankara Development Agency, Turkey
2 Yıldırım Beyazıt University, Department of Computer Science, Turkey

Abstract
Review Paper

Docker is an alternative application development and publishing infrastructure tool to various virtualization environments such as Virtual box and the like.

The most popular containerization platform is Docker which is the area where Docker images are run. Container is a lightweight contrasting option to full

machine virtualization that includes exemplifying an application in a container with its own working condition. These two concepts, virtualization and

containerization are competing in the cloud-based environments. When virtualization became the mainstream, VM security concerns was common. IT

Security experts are discussing the potential weaknesses of a virtualized environment for a long time. In this paper, focusing on Docker container, its

vulnerabilities and possible measurements against security concerns, we have provided information about assessment of risks and vulnerabilities of

containerization and the main differences between these two concepts via vulnerability analysis.

Keywords: Technology, Vulnerabilities, Dockers, Containers, Cloud computing security

1 Introduction

Docker is a program that performs working framework

level virtualization otherwise called containerization.

Docker is essentially developed for Linux, where it utilizes

the asset confinement properties of the Linux, for example,

cgroups and portion namespaces, and an association skilled

record framework to permit free "containers" keeping in

mind the end goal to keep running inside a solitary Linux

occurrence, staying away from the overhead of beginning

and keeping up virtual machines (VMs). Container-based

virtualization uses single kernel to run multiple instances

on an operating system and virtualization layer runs as an

application within the operating system. It is also called

operating system virtualization and in this approach, the

kernel of operating system runs on the hardware node with

different isolated guest virtual machines (VMs) called

containers. [1]

Docker is an open source virtualization platform for

software developers and system builders. With Docker you

can run Linux and Windows virtual containers (machines)

on Linux, Windows and MacOSX. With this platform, you

can easily install, test and deploy web systems. The Docker

takes the image of the software's installed state (such as an

.iso DVD image) and makes it available again. If you wish,

you can create this image once and send it to the servers

you want, if you do not, then you will create an image from

scratch on each server. Each server can reconstruct the

same image by looking at the instruction files called the

Dockerfile. There is no need for manual intervention.

As is depicted in the Fig 1, the structure development at

Docker systems, depends on the Moby Project upon which

ConteinerD, LinuxKit and İnfraKit have been used.

Therefore, the Docker is developed by the Moby Project.

Figure 1 Development of Docker [2]

Docker is an apparatus that makes it simpler to make

and run applications by utilizing container. Docker enables

an engineer to bundle up an application with the greater

part of the prerequisites, for example, libraries conditions

and do everything as one bundle. By doing this, the

engineer can rest guaranteed that the application will take

a shot at some other Linux machine without depending of

any altered settings that machine may have that could

contrast from the machine utilized for composing and

testing the code [3]. As is depicted in the Fig. 2, the usage

of container technology will likely looks very different in

ten years than they do now. Currently, containers are

predominantly being used within the software

development arena. Platforms such as Docker (the most

mature of the container environments) are growing at

exponential rates and taking nearly all market shares. Fig.

2 shows the rapid growth rate of Docker [4].

https://orcid.org/0000-0002-2691-7517
https://doi.org/10.46460/ijiea.617181
https://dergipark.org.tr/ijiea

A. Efe et al.

International Journal of Innovative Engineering Applications 4, 1 (2020), 31-39 32

Figure 2 Growth rate of Docker [4]

2 Security Problems in the Docker Literature

Security studies on Docker platforms are still

developing. In a study conducted by Bui, container-based

virtualization is considered to be able to provide a more

lightweight and efficient virtual environment, but not

without security concerns. He analyzed the security level

of Docker, a well-known representative of container-based

approaches considering just two areas: the internal security

of Docker, and how Docker interacts with the security

features of the Linux kernel, such as SELinux and

AppArmor, in order to harden the host system. He

proposed that the security level of Docker containers could

be increased if the operator runs them as "non-privileged"

and enables additional hardening solutions in Linux kernel,

such as AppArmor or SELinux [5].

In an analysis done by Combe et al, [6] it is revealed

that Docker usages have security implications for both

containers and their hosts, and repositories. Basics at al [7]

have proposed that in order to increase Docker security and

flexibility, an extension to the Dockerfile format to let

image maintainers ship a specific SELinux policy for the

processes that run in a Docker image, enhancing the

security of containers is required.

Shu et al. [8], who have studied 356,218 docker

images, made the following findings: (1) both official and

community images contain more than 180 vulnerabilities

on average when considering all versions; (2) many images

have not been updated for hundreds of days; and (3)

vulnerabilities commonly propagate from parent images to

child images. They have proposed a scalable Docker Image

Vulnerability Analysis (DIVA) framework for

automatically discovering, downloading, and analyzing

vulnerabilities in images from Docker Hub.

Manu et al, have provided unified security and privacy

multilateral security architecture for cloud services stack,

using key latest technology via LxC in general and Docker

containers in specific to help assess the security design and

architecture quality using multilateral security framework

for Docker container. [9]. They have made a deep dive of

the PAAS security and also try to analyze, compare and

contrast the PAAS Docker container security, with other

container technologies, and also with Virtual machine

security with and without Hypervisor, and current security

level of Dockers container[10]. Chelladhurai at al, have

proposed security algorithms and methods to address DoS

attacks related issues in the Docker container technology

in their study [11].

Gao et al, discussed the root causes of the containers'

information leakages and propose a two-stage defense

approach [12]. According to Jian, who has searched

defense methods against escape attack, Docker is faced

with the risk of attacks that exploit kernel vulnerability by

malicious users, once the exploit program in the container

launches an effective escape attack can gain root privilege

of the host, which will affect the reliability of other

containers and the entire system [13].

3 Problem Definition and Methodology

There are many advantages of Docker (or container)

technologies. However as Cyber security is a top concern

in nearly every major industry, in Docker technology it is

also the most controversial topic. Millions of web

applications which run on Docker platform are open for

cyber-attack. Since the time of Docker’s release in 2013,

several vulnerabilities have been discovered.

Securing Vulnerabilities in Docker Images

International Journal of Innovative Engineering Applications 4, 1 (2020), 31-39 33

We used Docker and related technologies not only

development environment but also production for many

projects. We have faced with some problems and search for

suitable solutions. All problems and solutions were

documented and published in the company for the future

use. The recommendations in this paper were collected

from these experiments.

This paper focuses on the security threats of web

applications. We explore current situation and several

vulnerabilities. We suggest a new method to help increase

security for the most common vulnerabilities. In order to

research and suggest new methods, firstly we need to

clarify the problems so that we can work on a much more

specific area. In the below you can see some problems that

we need to find a way to improve;

• How to analyze the security vulnerabilities of

Docker system?

• What are the most commonly found

vulnerabilities in Docker systems?

• How to detect vulnerabilities of a Docker system?

• How to detect and prevent DoS attacks on

Docker?

• How to detect vulnerabilities in Docker images?

In this research, there are many methodologies

combined to give more clear and whole explanations about

the subject. In this paper, Literature review is the most

crucial methodology. Because we have tried to see as much

as many papers about this subject to observe what is done

and what can be done about Docker Security. We try to

give descriptions about docker and docker security. This

paper is also a qualitative research paper due to the fact that

we used the knowledge based on experience and

observation that is obtained in the past researches that we

review in order to make assumptions.

4 Working Structure of Docker Dynamics and Its Benefits

Developers can bundle their development

environments into these containers with the necessary

configurations and transfer them to the desired

environment. This structure inspired by sea transport

removes many problems from the point of view of both

developers and system administrators. Docker leverages

the resource isolation features of Linux to create a

segmented, virtual environment that applications can

operate on it. This is conceptually like using a tool like

“chroot” to create an isolated, protected filesystem,

although the segmentation under Docker extends beyond

filesystem isolation alone to circumscribe resources.

Below, there are the three main functions of the Docker

platform:

• Build—Docker allows you to compose your

application from microservices, without worrying

about inconsistencies between development and

production environments, and without locking

into any platform or language.

• Ship—Docker provides developers to setup the

whole software development steps such as

development, testing, distribution and with a

consistent user interface.

• Run—Docker provides developers the ability to

deploy scalable services securely and reliably on

a wide variety of platforms.

Docker has three main parts:

• Docker Engine; Open-source containerization

platform

• Docker Cloud; including Docker Hub; Software

as a Service (SaaS) platform for sharing and

managing Docker containers

• Docker Datacenter; On-premise solution for

sharing and managing Docker containers and

Docker-containerized applications.

Figure 3. Docker Architecture [15]

Docker uses client-server architecture. The Docker

client tells the Docker daemon, which is on the host

operating system and builds, runs and distributes

containers. Docker users communicate with the daemon

through the client, which is the Docker binary. In the

figure, Docker architecture is shown. [16]

Users are always expecting applications to available,

elastic, scalable and interoperable at any time. Docker

provides these features to users. Main benefits of Dockers

are;[17]

Docker containers are negligible: Containers has one

or only a couple of running procedures. Less programming

implies littler likelihood of being influenced by

helplessness.

Docker containers are task-particular: There is a pre-

meaning of what precisely ought to keep running in the

containers, way of the information indexes, required open

ports, daemon arrangements, mount focuses, and so forth.

Any security-related oddity is less demanding to identify

than in other multi-reason frameworks.

Docker containers are segregated: It is disengaged

both from the facilitating framework and from different

containers.

A. Efe et al.

International Journal of Innovative Engineering Applications 4, 1 (2020), 31-39 34

Docker containers are reproducible: Due to their

explanatory form frameworks any administrator can

without much of a stretch assess how the holder is

manufactured and completely see each progression. Based

on various evaluation and experiments, Docker provides

fast deployment, small footprint and good performance

which make it potentially a viable Edge Computing

platform [18].

Let us express the difference between other

virtualization technologies and Docker in a simple

example. For example; An Ubuntu operating system will

be installed. To perform this operation on other

virtualization technologies, an Ubuntu version must have

an ISO file. In the Docker structure, it is enough to write

the command:

 docker pull ubuntu

This command will install all versions of Ubuntu on

the Docker repository. In other virtualization technologies,

it is necessary to download and install the ISO file for each

version, which causes more time loss. Docker operations

are carried out via the terminal. Some interfaces have been

developed to make our operations even easier with Docker.

Using these interfaces we can manage our containers even

more easily [19].

5 Comparison with VM Structures

Containers are less adaptable contrasted with VM's,

MS windows, can't be keep running on a Linux OS,

Containers are less secure contrast with VM, because of

containers keep running in tight coupling with have OS and

keeps running over it, if the container is traded off then

hacker/assailant can get finish access to have OS and

assets, additionally it is perplexing to introduce, setup the

earth, oversee, direct, and automate the framework

utilizing Container innovation. Container base

virtualization utilizes have OS level virtualization, so

framework security is of most extreme significance to

screen utilizing the multilateral adjusted security

Containers are executed in client space on peak of an OS

piece.

• Virtual Machines

Each virtual machine includes the application, the

necessary binaries, libraries, and an entire guest operating

system — all of which may be tens of GBs

• Containers

Containers include the application and all of its

dependencies but share the kernel with other containers.

They run as an isolated process in user space on the host

operating system. They are also not tied to any specific

infrastructure — Docker containers run on any computer,

on any infrastructure and in any cloud [16].

6 Docker Vulnerabilities

Since Docker’s release in 2013, there has been

discovered several vulnerabilities that could lead to

privilege escalation code execution. Here in the below

there are top five vulnerabilities that found different

versions of Docker.

1. CVE-2014-9357

This vulnerability was identified in Docker Version

1.3.2 which allowed the execution of arbitrary code with

root privilege. During the decompression of LZMA (.xz)

archives, there was privilege escalation vulnerability. This

vulnerability was patched by version 1.3.3.26 (CVSS

Score: 10.0) [23]

2. CVE-2014-6407

This vulnerability was identified in Docker Version

1.3.1, which allowed privilege escalation through symlink,

and hard link traversals found in the Docker’s image

extraction. This vulnerability was patched by version

1.3.2.27 (CVSS Score: 7.5) [24].

Figure 4 Container Architecture [17]

Figure 5 VM Architecture [15]

3. CVE-2014-3630

This vulnerability was identified in Docker Version

1.6.0 and allowed attackers to bypass security due to weak

permissions on the /proc paths. Attackers could access

sensitive information and perform unauthorized actions

due to the security bypass. This vulnerability was patched

by version 1.6.1.28 (CVSS Score: 7.2) [25]

4. CVE-2014-3499

This vulnerability was identified in Docker 1.0.0

which indicated that Docker was using “world-readable”

and “world-writable” permissions on the management

socket. This vulnerability allowed local users to gain root

Securing Vulnerabilities in Docker Images

International Journal of Innovative Engineering Applications 4, 1 (2020), 31-39 35

privileges to the local machine. This vulnerability was

patched by version 1.0.1.29 (CVSS Score: 7.2) [26]

5. CVE-2015-3627

This vulnerability was identified in Docker 1.6 and the

Libcontainer version 1.6.0 that allowed a “mount

namespace breakout” when a container was respawned.

This function created an exploit to allow codes to escape

the container. Through this exploit, attackers can create a

privilege escalation. This vulnerability was patched in

Docker 1.6.1. (CVSS Score 7.2) [27]

There are some specific parts of Docker hub contains

both official and community images. Official Docker

based architectures, which are more prone to attacks. Some

of them are related to the images. Docker distributes

applications in the form of images. Each image contains

the target application software as well as its supporting

libraries and configuration files. Repositories contain

public, certified images from vendors. In contrast, any user

or organization can create community repositories. [15]

Some further vulnerability is related to the Docker

architecture. [17]

If any attacker compromises host system, the container

isolation and security safeguards will not make much of a

difference. Besides, containers run on top of the host kernel

by design. The kernel is shared among all containers and

the host, magnifying the importance of any vulnerabilities

present in the kernel. Should a container cause a kernel

panic, it will take down the whole host [14].

An attacker who gains access to a container should not

be able to gain access to other containers or the host [14.]

The “container breakout” term is used to denote that the

Docker container has bypassed isolation checks, accessing

sensitive information from the host or gaining additional

privileges.

Containers are much more numerous than virtual

machines on average, they are lightweight, and you can

spawn big clusters of them on modest hardware, but it

implies that many software entities are competing for the

host resources. If one container can monopolize access to

certain resources, it can starve out other containers on the

host, resulting in a denial-of-service (DoS), whereby

legitimate users are unable to access part or all of the

system. [14]

Docker’s popularity is since, with containers, anybody

can bundle code and conditions into a picture and distribute

effortlessly to a registry whenever anywhere. From there,

anybody can download the picture and run containers from

the picture. This has brought convey ability of code

crosswise over groups and stimulated the application

lifecycle.

However, containers can incidentally uncover

vulnerabilities, if the required precautions are not taken.

This is particularly obvious when working with container

images that are shared amongst clients and associations.

Container images are downloaded from registries like

Docker Hub or outsider registries. There are official and

unauthorized repositories. These registries contain a large

library of images. These registries are mainly user created

and uncontrolled, this leads to low frequency of updates

which results in vulnerabilities in the images.

A few examinations demonstrate that over 30% of

authority repositories contain images that are insecure to

an assortment of security assaults [21].

Figure 6 Official Image Vulnerabilities [21]

Fig 6 demonstrates the primary outcomes got by

breaking down every official image from Docker Hub. In

excess of 33% of all images have high need vulnerabilities

and near 66% have high or medium need vulnerabilities

[21].

Figure 7 Packages with High Priority Vulnerabilities [21]

A. Efe et al.

International Journal of Innovative Engineering Applications 4, 1 (2020), 31-39 36

The as of late discharged powerlessness in

inconsistent is available in a huge part of images (~20%).

Prominent OpenSSL vulnerabilities, for example,

Heartbleed and Poodle are available in near 10% of

authority Docker Hub images [21].

Fig. 8 demonstrates the fundamental outcomes after

breaking down general images. Generally speaking, the

level of vulnerabilities is essentially higher than that of

Official images [21].

Figure 8 General Image Vulnerabilities [21]

According to a security analysis report released by

a researcher from Federacy, 24% of images in public

repositories were found to have significant vulnerabilities,

with around 11% among them rated high, 13% as

moderate and the rest as potentially vulnerable. [22]

Docker Hub, one of the cloud-based Docker

container libraries, has been compromised by data

spoofing by an unknown attacker by accessing the

company's only Hub database in 2019. Docker Hub is an

online repository service where users and organizations

can create, test, store and distribute Docker container

images both publicly and privately. It was reported that

sensitive data were generated for approximately 190,000

Hub users, including the Github and Bitbucket markers for

a small percentage of the affected users, as well as user

names and hash codes for Docker repositories. Docker

Hub has sent information e-mails to affected users,

providing information about the security event and

suggesting that they change their passwords to their online

accounts using the same password for Docker Hub.

Docker Hub said that the company will continue to

investigate security breaches and will share more

information whenever possible. The company is also

working to improve its overall security processes and

review its policies following violations. [30]

7 Possible Measures and Precautions Against Risks and

Threats

Some security analysis tools can be used to inspect

public Docker images. Security audit, container image

verification, runtime protection, automated policy

learning or intrusion prevention capabilities can be tested

using these tools. Anchore Navigator, AppArmor,

AquaSec, BlackDuck Docker, Cavirin, Cilium are some

tools that can be used to analyze container security.

7.1. Checking the source of images

Container images are downloaded from registries

like Docker Hub or outsider registries like Quay. These

registries have Container images from associations and

people alike. The same number of as official stores from

IT merchants, there are numerous unapproved repositories

too. Over the application lifecycle, designers, QA and IT

will download numerous images for various sorts of

purposes. It's vital to screen these images and play out a

few controls previously they are introduced.

In order to do this, Docker Content Trust can be

enabled, which integrates with third-party registries to

verify digital signatures for container images that are

downloaded from them. This helps developers to make

whitelist of official repositories from authorized, trusted

sources.

In the event that it is expected to work with

unsubstantiated images from accomplices and sellers, for

instance, it could be considered updating your images

checking to heartier container security devices like Twist

bolt. It filters images, as well as gives you a chance to set

up custom cautions at whatever point anybody endeavors

to introduce suspicious images.

7.2. Implementing powerful access controls

The wellspring of container images and use of

official images can leave images traded off. Along these

lines, get to control is to a great degree critical for holder

pictures.

Normally, all clients are doled out root benefits

inside a container. In any case, this is not the best practice

from the security perspective. At whatever point a client

is made, you have to change their entrance level to non-

root. Certain clients will in the long run require root access

to finish certain undertakings, however these special cases

ought to be made just inside those compartments that play

out the assignment, and just on the off chance that it is

important. This undertaking driven access control

guarantees that regardless of whether one client account is

traded off, assailants cannot make much harm on whatever

is left of the framework. It is unrealistic to physically

change the status of clients for each container unfailingly.

This errand should be robotized. A stage like Twistlock

empowers role-based access control (RBAC) for pictures,

and gives you a chance to obtain benefits to clients in light

of their activity work. You can arrange RBAC in view of

complex decides and guarantee that all clients have the

vital benefits to do their undertakings nothing less, and

nothing more.

7.3. Keeping containers lightweight

Engineers are attracted in to containers because of

the lighter structure contrasted with virtual machines

(VMs). When running containers, it's conceivable to stack

an excessive number of bundles on a container with the

goal that it progresses toward becoming enlarged to in

excess of 100 MB. The perfect container size ought to be

only several MBs.

While choosing an OS for your image's base layer,

search for a moderate choice. There are two or three great

choices like BusyBox, Alpine Linux, and RancherOS.

Furthermore, introduce just the bundles that are required

for a container to play out its undertaking. This enhances

Securing Vulnerabilities in Docker Images

International Journal of Innovative Engineering Applications 4, 1 (2020), 31-39 37

the execution of containers, and critically, diminishes the

assault surface territory.

7.4. Keeping images solid

Once you have taken after every single best practice

to set up your images the correct way, it is essential to

screen their wellbeing amid runtime. This requires routine

"wellbeing checks" on the holders. On the off chance that

Docker Engine discovers containers that are not working,

it can naturally supplant them. Along these lines, you can

keep the framework sound regardless of whether singular

containers are observed to be helpless.

A critical practice to guarantee the great strength of

your containers is to keep container images refreshed with

the most recent form and apply security patches to them

as often as possible. You should have the capacity to filter

the images amid runtime to discover vulnerabilities and

fix them expeditiously.

Identifying vulnerabilities is not a simple

undertaking, as your framework could run a huge number

of containers. At this scale, you require a risk discovery

instrument like Twistlock that screens container runtime

with the assistance of machine learning calculations. It can

spot concerning examples and alarm you on their effect.

This activity of finding the needle in the pile is not

conceivable through manual poring over of log

information and measurements—it takes wise

calculations and a cutting-edge risk discovery stage like

Twistlock.

7.5. Handling secret information with mind

In spite of doling out read-just access to clients,

despite everything you have to watch what information

stored in your containers. For instance, you ought to never

store confidential information like passwords, tokens,

keys, and private client data inside docker documents.

Regardless of whether erased later, this information can

be recovered from the image's history. Rather, you should

utilize the privileged insights administration highlight that

accompanies both Kubernetes and Docker Swarm. Every

one of them have solid defaults to guarantee security

credentials are appropriately scrambled, put away in an

encoded design, and when recovered, can be decoded just

by approved clients.

Holder images are likely the best time some portion

of the Docker encounter. However, they can likewise be

the most perilous from a security outlook. By

understanding the different subtleties to Docker image

security, you can guarantee your cloud-local applications

are considerably more secure than your heritage

applications ever were. [20]

8 Conclusions

Development environments can vary from project to

project. Even the installations of the same project with

different customers contain different components. It may

take a lot of time to install the same environment in the

developer environment in order to solve the problems of

the customers. Some software houses maintain developer

environments on virtual servers in order to repeat

installations in developer environments in different

versions with different customers. Considering that a

virtual machine is around 25 GB on average, if a single

project is installed on 5 customers, 125 GB of space will

be required on each developer's computer. Even if we

ignore the problem created by the provision of virtual

servers in resource usage, in every projects that are

actively developing, web server changes, database schema

or reference data changes, etc., the distribution of the

master virtual machine in binary format to all developers,

and if any, it requires the developers to apply their own

customizations to these machines again and again.

Another development environment problem is the time

spent in setting up the computers of newcomers with the

necessary tools in development environments where no

virtual server is used. This is usually done by an

experienced senior member of the team, in which case a

period of time that both the experienced member of the

team and the new member can effectively use is lost.

Cloud computing makes extensive use of virtual

machines because they permit workloads to be isolated

from one another and for the resource usage to be

somewhat easily controlled [28]. Docker is an open

platform for developers and system administrators to

build, ship, and run distributed applications using Docker

Engine, which is a portable, lightweight runtime and

packaging tool, and Docker Hub, which is a cloud service

for sharing applications and automating workflows. The

main advantage is that, Docker can get code tested and

deployed into production as fast as possible [29].

Since the Docker was introduced to the market, a

series of updates and changes have been made to improve

its functionality and security. However, as any

programmer knows, there is no safe platform and for the

Docker there is also no exception. Also, most of the time,

security is affected by how a user interacts with the

Docker, which faces several problems with human errors.

In a study of more than 700 companies from many

developed countries conducted by Cloud Foundry in

2016, half of the companies used the container

technology. Of these, 64% plan to expand the use of

container technology. When we look at this rapid increase

in container usage, new security problems are constantly

emerging. The more a system is used by users, the more it

becomes a strategic target for attackers. The Docker seems

to be the most widely used container technology today,

and as with many other similar platforms, many have

protocol-specific security issues. A list of weaknesses

previously found in the Docker can be viewed on CVE-

List and information about these security issues can be

found.

Cyber Security is at the forefront of today's data

centers and for good reason. Even a very small-scale

violation can lead to very large damage. For this reason,

organizations need to be particularly sensitive to security

implications and new security vulnerabilities. When

virtualization became the mainstream, VM security was

common. IT Security experts are discussing the potential

weaknesses of a virtualized environment for a long time.

Perhaps the worst case scenario is "VM Escape".

This term is used to describe a situation in which an

attacker can endanger a guest virtual machine and be

"escaped" from within the virtual machine and access

other main operations on the hypervisor. Virtualization

leaders have made great efforts to ensure that such

security issues are addressed, and the VM escape is

rejected as a real threat. A weakness called "CEN-2015-

A. Efe et al.

International Journal of Innovative Engineering Applications 4, 1 (2020), 31-39 38

3456" and "VENOM", and by exploiting some of the

vulnerable codes in QEMU's virtual floppy drive, the

attackers potentially had the advantage to exploit other

virtual machines running on the host computer. For this

reason, the Docker can help with container security, even

if it is not a virtualization service.

From Docker 1.8 version, a new security feature

called "Docker Content Trust" has been introduced. This

feature allows verifying the authenticity, integrity and

releasing date of all Docker images in the "Docker Hub"

repository. This content assurance is not enabled by

default. When enabled, Docker cannot download any of

the unsigned images and therefore becomes more secure.

To enable this feature:

sudo export DOCKER_CONTENT_TRUST = 1.

The Docker will inform when trying to download an

image that is not already signed. By default, there is no

resource constraint in a container, and the host can use

most of the given resource to the extent allowed. The

Docker provides a way to control the amount of memory,

CPU, or block that the container run command can use. It

is possible that when a container runs into trouble and

starts consuming all of the host's resources, bad results

may occur on a scenario. The resource limits for

containers can be set from the "docker run" command for

further security considerations.

References

[1] Singh, S., Singh, N. “Containers & Docker: Emerging

roles & future of Cloud technology”, 2nd International

Conference on Applied and Theoretical Computing
and Communication Technology (iCATccT),

16850813 DOI: 10.1109/ICATCCT.2016.7912109,

IEEE, 21-23 July 2016.

[2] Morgan, T. P. “Docker Completes Its Platform Wıth
Dıy Lınux” 2017.

[3] What is Docker? (n.d.). Retrieved from URL:

https://opensource.com/resources/what-docker

[4] Docker. (n.d.). Retrieved from Docker Website URL:

https://www.docker.com/

[5] Bui, T., “Analysis of Docker Security” Aalto

University T-110.5291 Seminar on Network Security,
2014.

[6] Combe, T., Martin, A., Pietro, R.D. “To Docker or not

to Docker: a security perspective” IEEE Cloud

Computing, 2016.
[7] Bacis E., Mutti, S. Capelli, S. Paraboschi, S.

“DockerPolicyModules: Mandatory Access Control

for Docker containers” IEEE Publishing, 2015.

[8] Shu, R., Gu X., Enck, W., “A Study of Security
Vulnerabilities on Docker Hub” CODASPY '17

Proceedings of the Seventh ACM on Conference on

Data and Application Security and Privacy, 2017.

[9] Manu, A R, Patel, J. K., Akhtar S., Agrawal, V. K.,
Murthy K N, “Docker container security via

heuristics-based multilateral security-conceptual and

pragmatic study”, IEEE Publishing, 2016.

[10] Manu, A R, Patel, J. K., Akhtar S., Agrawal, V. K.,
Murthy K N, “A study, analysis and deep dive on

cloud PAAS security in terms of Docker container

security”, International Conference on Circuit, Power
and Computing Technologies (ICCPCT), 2016.

[11] Chelladhurai, J., Chelliah, P., Kumar, S. A., “Securing

Docker Containers from Denial of Service (DoS)

Attacks” International Conference on Services
Computing (SCC), 2016.

[12] Gao X., Gu, Z. Kayaalp, M., Pendarakis, D., Wang,
H., “ContainerLeaks: Emerging Security Threats of

Information Leakages in Container Clouds” 47th

Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), 2017.
[13] Jian, Z., Chen, L.,“A Defense Method against Docker

Escape Attack” ICCSP '17 Proceedings of the 2017

International Conference on Cryptography, Security
and Privacy, 2016.

[14] Five Security concerns when using docker. (n.d.).

Retrieved from Oreilly URL:

https://www.oreilly.com/ideas/five-security-
concerns-when-using-docker

[15] Rui, S., Xiaohui, G., & William, E. A Study of

Security Vulnerabilities on Docker Hub. CODASPY

'17 Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy (pp.

269-280). Scottsdale, Arizona, USA: ACM. March 22

- 24, 2017.

[16] ISACA, Understanding the Enterprise Advantages of
Application Containerization. (n.d.). USA. 2016.

[17] Docker Security Vulnerabilities. (n.d.). Retrieved

from Sysdig URL: https://sysdig.com/blog/7-docker-

security-vulnerabilities/
[18] Ismail B. I. et al., "Evaluation of Docker as Edge

computing platform," 2015 IEEE Conference on Open

Systems (ICOS), Bandar Melaka, 2015, pp. 130-

135.doi: 10.1109/ICOS.2015.7377291
[19] Ayaz Ö., Aydın G., “Uygulama Sanallaştırmada Yeni

Bir Yaklaşım: Docker”, URL:

https://ab.org.tr/ab15/bildiri/312.pdf

[20] Twistlock. (n.d.). Retrieved from 5 Best Practices to
Container Image Security:

https://www.twistlock.com/2017/08/31/container-

image-security-best-practices/

[21] Over 30% of Official Images in Docker Hub Contain
High Priority Security Vulnerabilities. (n.d.).

Retrieved from banyanops URL:

https://blog.banyansecurity.io/blog/over-30-of-

official-images-in-docker-hub-contain-high-priority-
security-vulnerabilities

[22] Federacy. (n.d.). Retrieved from Container Scanning

Specification URL:

https://www.federacy.org/docker_image_vulnerabiliti
es

[23] Docker 1.3.3 Security Advisor. Retrieved from

Security focus Website URL:

https://www.securityfocus.com/archive/1/archive/1/5
34215/100/0/threaded

[24] Bug 1167505 - (CVE-2014-6407) CVE-2014-6407

docker: symbolic and hardlink issues leading to

privilege escalation. Retrieved from bugzilla.redhat
Website URL:

https://bugzilla.redhat.com/show_bug.cgi?id=116750

5

[25] SUSE-SU-2015:0984-1: moderate: Security update
for docker.Retrieved from Suse Website:

http://lists.suse.com/pipermail/sle-security-

updates/2015-June/001419.html

[26] RHSA-2014:0820 - Security Advisory. Retrieved
from redhat Website URL:

https://access.redhat.com/errata/RHSA-2014:0820

[27] Docker 1.6.1 - Security Advisory [150507]. Retrieved

from Seclists Website URL:

http://seclists.org/fulldisclosure/2015/May/28https://

www.cvedetails.com/vulnerability-list/vendor_id-

13534/product_id- 28125/Docker-Docker.html
[28] Felter, W. Ferreira, Rajamony A. R. and Rubio, J. "An

updated performance comparison of virtual machines

and Linux containers," 2015 IEEE International

Symposium on Performance Analysis of Systems and

Securing Vulnerabilities in Docker Images

International Journal of Innovative Engineering Applications 4, 1 (2020), 31-39 39

Software (ISPASS), Philadelphia, PA, 2015, pp. 171-
172. doi: 10.1109/ISPASS.2015.7095802

[29] Preeth E N, F. J. P. Mulerickal, B. Paul and Y. Sastri,

"Evaluation of Docker containers based on hardware

utilization," 2015 International Conference on Control
Communication & Computing India (ICCC),

Trivandrum, pp. 697-700.doi:

10.1109/ICCC.2015.7432984, 2015.
[30] Wei, W. “Docker Hub Suffers a Data Breach, Asks

Users to Reset Password” 2019.

