
*e-mail:oaarik@nny.edu.tr

Research Article GU J Sci 35(1): 92-111 (2022) DOI: 10.35378/gujs.682388

Gazi University

Journal of Science

http://dergipark.gov.tr/gujs

Genetic Algorithm Application for Permutation Flow Shop Scheduling

Problems

Oguzhan Ahmet ARIK *

Nuh Naci Yazgan University, Industrial Engineering Department, 38170 Kayseri, Turkey

Highlights

• Genetic algorithm applied to permutation flow shop scheduling problems.

• Parameters of proposed GA are calibrated in view of optimality and elapsed time.

• Crossover probability has no effect on optimality and elapsed time.

• Well-known test instances have been solved with the proposed GA.

Article Info

Abstract

In this paper, permutation flow shop scheduling problems (PFSS) are investigated with a genetic

algorithm. PFSS problem is a special type of flow shop scheduling problem. In a PFSS problem,

there are n jobs to be processed on m machines in series. Each job has to follow the same machine

order and each machine must process jobs in the same job order. The most common performance

criterion in the literature is the makespan for permutation scheduling problems. In this paper, a

genetic algorithm is applied to minimize the makespan. Taillard’s instances including 20, 50, and

100 jobs with 5, 10, and 20 machines are used to define the efficiency of the proposed GA by

considering lower bounds or optimal makespan values of instances. Furthermore, a sensitivity

analysis is made for the parameters of the proposed GA and the sensitivity analysis shows that

crossover probability does not affect solution quality and elapsed time. Supplementary to the

parameter tuning of the proposed GA, we compare our GA with an existing GA in the literature

for PFSS problems and our experimental study reveals that our proposed and well-tuned GA

outperforms the existing GA for PFSS problems when the objective is to minimize the makespan.

Received: 30 Jan 2020

Accepted: 03 Mar 2021

Keywords

Genetic algorithm

Permutation flow shop

Scheduling

Makespans

1. INTRODUCTION AND LITERATURE REVIEW

Permutation flow shop scheduling (PFSS) is the consideration of the permutation order of jobs in the

classical flow shop scheduling problem. In a PFSS problem, there are n jobs to be processed at m machines

by following the same machine order and each machine must process jobs with the same job order. The

total number of possible sequences is n! for a PFSS problem. The problem is classified as Np-Hard. By

using the triple scheduling notations (α/β/γ), the problem is classified as Fm|perm|Cmax. Non-

approximate solution methods such as branch-and-bound take plenty of solution times to find the optimum

sequence for any objective function while the problem size increases. Therefore, effective algorithms such

as NEH algorithm [1] or metaheuristic algorithms such as genetic algorithm (GA), tabu search, or particle

swarm optimization can be used to find a near-optimal solution in an endurable solution time. The parameter

quality of proposed solution approaches of heuristics or metaheuristics for combinatorial optimization

problems is so significant to obtain a near-optimal solution in a bearable time period. In this paper, a GA

is proposed for PFSS problems to minimize the makespan (the maximum completion time). The parameters

of the proposed GA such as crossover probability, mutation probability, and population size are analyzed

with ANOVA. In order to evaluate the proposed GA’s optimality and speed, Taillard’s [2] flow shop

instances including 20, 50, and 100 jobs with 5, 10, and 20 machines and their best-known solutions are

used in this paper.

http://dergipark.gov.tr/gujs
https://orcid.org/0000-0002-7088-2104

93 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

Researchers have proposed exact or heuristic methods for the problem for more than 40 years in the

literature. Some researchers conducted literature surveys for the problem in the literature. Some of these

are conducted by Yenisey and Yagmahan [3], Reza et al. [4], Framinan et al. [5] and Framinan et al. [6].

Because of the computational complexity of the problem, PFSS problem is one of the most investigated

problems in the scheduling literature. Table 1 presents a detailed literature review about PFSS problems

with the makespan (𝐶𝑚𝑎𝑥). As a summary for readers, we can say that the most effective algorithms for

the problem are iterated greedy algorithms with accelerations schemas, tie-breaking mechanism, insertion-

based local search operators for the complete solution, and partial solution.

Table 1. Literature review for PFSS problems with makespan criterion

Authors Method Objectives and

Constrains

Summary

Tasgetiren et al.

[7]

Particle swarm

optimization (PSO)
𝐶𝑚𝑎𝑥 and the total

flowtime

New best solutions were

found.

Wang and Tang

[8]

PSO 𝐶𝑚𝑎𝑥 with the blocking

constrain

New best solutions were

found.

Chen et al. [9] PSO 𝐶𝑚𝑎𝑥 Their revised discrete PSO

outperforms all the existing

PSO algorithms for the

problem.

Li and Deng

[10]

PSO 𝐶𝑚𝑎𝑥

Rajendran and

Zieger [11]

Ant-colony optimization

(ACO)
𝐶𝑚𝑎𝑥 and the total

flowtime

New best solutions were

found.

Ahmadizar [12] ACO 𝐶𝑚𝑎𝑥 His proposed ACO

outperforms well-known

ACO algorithms in the

literature for the problem.

Ruiz and Stützle

[13]

Iterated Greedy (IG) 𝐶𝑚𝑎𝑥 Their IG outperforms all

existing solution methods so

far in the literature.

Ruiz and Stützle

[14]

IG 𝐶𝑚𝑎𝑥 and total

weighted tardiness

Ribas et al. [15] IG 𝐶𝑚𝑎𝑥 with the blocking

constrain

Minella et al.

[16]

A new algorithm based

on an IG algorithm
𝐶𝑚𝑎𝑥, tardiness, and

flow time

Grabowski and

Wodecki [17]

Tabu search (TS) 𝐶𝑚𝑎𝑥

Varadharajan

and Rajendran

[18]

Simulated Annealing

(SA)
𝐶𝑚𝑎𝑥 and the total

flowtime

Grabowski and

Pempera [19]

TS 𝐶𝑚𝑎𝑥 with blocking

constrain

They proposed a specific

neighborhood of algorithms

that allows multi moves in an

iteration.

Zobolas et al.

[20]

GA and variable

neighborhood search

(VNS)

𝐶𝑚𝑎𝑥

Tseng and Lin

[21]

GA and local search 𝐶𝑚𝑎𝑥 and the total

flowtime

Pasupathy et al.

[22]

GA 𝐶𝑚𝑎𝑥 and the total

flowtime

94 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

Chen et al. [23] GA 𝐶𝑚𝑎𝑥 New strategy for combining

global statistical information

from population and local

location information from

each individual in the

population.

Haq et al. [24] GA and artificial neural

network
𝐶𝑚𝑎𝑥

Nagano et al.

[25]

GA 𝐶𝑚𝑎𝑥

Rad et al. [26] New initial solution

heuristic
𝐶𝑚𝑎𝑥 They introduced five new

methods that outperform the

NEH algorithm.

Dong et al. [27] An improved NEH

algorithm with the tie-

breaking mechanism

𝐶𝑚𝑎𝑥

Kalczynski and

Kamburowski

[28]

An improved NEH

algorithm with the tie-

breaking mechanism

𝐶𝑚𝑎𝑥

Vázquez-

Rodríguez and

Ochoa [29]

GA 𝐶𝑚𝑎𝑥, the sum of

tardiness, the sum of

weighted tardiness, the

sum of completion

times, and the sum of

weighted completion

times

They obtained new NEH

heuristic variants by using

genetic programming.

Dubois-Lacoste

et al. [30]

An algorithm consisted

of two-phases local

search and Pareto local

search

𝐶𝑚𝑎𝑥, the sum of

completion times and

both of the weighted and

no-weighted total

tardiness

Chiang et al.

[31]

Memetic algortihm with

NSGA-II
𝐶𝑚𝑎𝑥 and the total

flowtime

Zheng and

Yamashiro [32]

Quantum differential

evolutionary algorithm
𝐶𝑚𝑎𝑥, total flow time,

and the maximum

lateness of jobs

Vallada and

Ruiz [33]

New cooperative

metaheuristic methods

Total tardiness and

𝐶𝑚𝑎𝑥

Lin and Ying

[34]

SA 𝐶𝑚𝑎𝑥 and the total

flowtime

Ribas et al. [35] A three-step heuristic

algorithm
𝐶𝑚𝑎𝑥

Laha and

Chakraborty

[36]

SA and NEH 𝐶𝑚𝑎𝑥

Saravanan et al.

[37]

Scatter search 𝐶𝑚𝑎𝑥

Tzeng and Chen

[38]

Distribution algorithm

with ACO
𝐶𝑚𝑎𝑥

Dasgupta and

Das [39]

Cuckoo Search 𝐶𝑚𝑎𝑥 and mean flow

time

Chen et al. [40] Heuristic 𝐶𝑚𝑎𝑥

95 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

Moslehi and

Khorasanian

[41]

VNS algorithm with SA 𝐶𝑚𝑎𝑥 with limited

buffer

New best solutions were

found.

Rajendran et al.

[42]

Heuristic rules for tie-

breaking mechanism

within NEH algorithm

𝐶𝑚𝑎𝑥 They reported their heuristic

as the best-known heuristic

rule in the literature.

Fernandez-

Viagas and

Framinan [43]

A new tie-breaking

mechanism for heuristic

and metaheuristic

algorithms

𝐶𝑚𝑎𝑥 They reported their heuristic

as the best-known heuristic

rule in the literature.

Dubois-Lacoste

et al. [44]

New local search

mechanism for partial

solutions in current

metaheuristics

𝐶𝑚𝑎𝑥 They reported their heuristic

as the best-known heuristic

rule in the literature.

Abdel-Basset et

al. [45]

A hybrid whale

optimization algorithm
𝐶𝑚𝑎𝑥

Benavides and

Ritt [46]

Heuristics 𝐶𝑚𝑎𝑥 They stated that their new

heuristics are more

successful than the NEH

algorithm as initial solution

algorithms.

Chen et al. [47] Quantum-inspired ACO 𝐶𝑚𝑎𝑥

Kizilay et al.

[48]

Variable block insertion

heuristic
𝐶𝑚𝑎𝑥 They used their new heuristic

within well-known

metaheuristics and stated that

their new heuristic is well

fitted with well-known

metaheuristics.

Fernandez-

Viagas and

Framinan [49]

A best-of-breed IG

algorithm
𝐶𝑚𝑎𝑥 It is reported as the best-so-

far approximate method for

the problem.

Arık [50] Artificial bee colony 𝐶𝑚𝑎𝑥 The best component of IG

combined with an artificial

bee colony algorithm.

Gyms et al. [51] A new node

decomposition scheme

that combines dynamic

branching and lower

bound refinement

strategies

𝐶𝑚𝑎𝑥

Arık [52] Population-based TS 𝐶𝑚𝑎𝑥 Hybrid solution method with

crossover and mutation

strategies for the problem

under effects of learning and

deterioration.

In this paper, we propose a GA for PFSS problems with the makespan criterion that is the most common

performance criterion in the literature. GA drives random search operations within its structure inspiring

by the evolutionary process. Like any metaheuristic algorithm for a combinatorial optimization problem,

GA’s strength and applicability depend on its design and parameter tuning to the problem. In this study, we

tune parameters of GA considering optimality and elapsed time until finding a near-optimal / optimal

solution for the PFSS problem that has lots of real-life examples. For our proposed GA, we determine the

best parameter levels and effects of GA parameters on both optimality and elapsed time.

96 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

2. MATHEMATICAL MODEL

In this section a mixed-integer linear programming model for PFSS is given for the readers as follows:

Indices

𝑖: 𝑗𝑜𝑏 𝑖𝑛𝑑𝑒𝑥, 𝑖 = 1 … . 𝑛

𝑗: 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑛𝑑𝑒𝑥, 𝑗 = 1 … . 𝑚

𝑟: 𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑎𝑙𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 𝑟 = 1 … . 𝑛

Parameters

𝑃𝑖,𝑗: 𝑏𝑎𝑠𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑖 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗

Decision Variables

𝑋𝑖,𝑟: 𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠, 𝑡ℎ𝑒𝑛 𝑖𝑡′𝑠 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0

𝑃[𝑟],𝑗: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟 𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗

𝐶[𝑟],𝑗: 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟 𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗

𝑆[𝑟],𝑗: 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟 𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗

𝐶𝑚𝑎𝑥: 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

Model

𝑀𝑖𝑛 𝑧 = 𝐶𝑚𝑎𝑥 (1)

𝐬. 𝐭.:

𝐶𝑚𝑎𝑥 ≥ 𝐶[𝑛],𝑚 (2)

∑ 𝑋𝑖,𝑟
𝑛
𝑖 = 1 ∀𝑟 (3)

∑ 𝑋𝑖,𝑟
𝑛
𝑟 = 1 ∀𝑖 (4)

𝐶[𝑟],𝑗 ≥ 𝑆[𝑟],𝑗 + 𝑃[𝑟],𝑗∀𝑟, 𝑗 (5)

𝑆[𝑟],𝑗 ≥ 𝐶[𝑟],𝑗−1 ∀𝑟, 𝑗 = 2, … , 𝑚 (6)

𝑆[𝑟],𝑗 ≥ 𝐶[𝑟−1],𝑗 ∀𝑗, 𝑟 = 2, … , 𝑚 (7)

𝑃[𝑟],𝑗 = ∑ 𝑋𝑖,𝑟
𝑛
𝑖 ∗ 𝑃𝑖,𝑗 ∀ 𝑟, 𝑗 (8)

𝐶[0],1 = 0 (9)

𝐶𝑚𝑎𝑥 ≥ 0 (10)

𝐶[𝑟],𝑗, 𝑃[𝑟],𝑗, 𝑆[𝑟],𝑗 ≥ 0 ∀𝑟, 𝑗 (11)

𝑋𝑖,𝑟 ∈ {0,1} ∀ 𝑖, 𝑟 (12)

The objective function of model (1) minimizes the maximum completion time of the schedule. Constraint

(2) is to determine the makespan. Constraints (3) and (4) guarantee that each job must be assigned to only

one position and each position must be used for only one job. Constraint (5) shows the relationship among

completion, start, and processing times of the job assigned to the position 𝑟. Constraint (6) shows that a

job’s starting time in machine 𝑗 must be greater than or equal to the completion time of the same job in

machine 𝑗 − 1. Constraint (7) shows that starting time of the job in position 𝑟 must be greater than or equal

to the completion time of the job in position 𝑟 − 1 in the same machine. Constraint (8) determines the

calculation of the processing time of the job in position 𝑟 in machine 𝑗. Constraint (9) expresses that all jobs

can be processed at time zero in the first machine. Constraints (10-12) show necessary domains of decision

variables.

3. GENETIC ALGORITHM

There are several existing GA methods in the literature for PFSS problems. Some of these were conducted

by Pasupathy et al. [22], Chen et al. [23], and Nagano et al. [25]. Pasupathy et al. [22] proposed a multi-

objective GA for scheduling in flow shops to minimize the makespan and total flowtime of jobs. They used

binary-tournament selection, single-point crossover, and shift mutation mechanisms in their proposed GA.

They did not tune the parameters of their proposed multi-objective GA. Chen et al. [23] proposed a self-

guided GA for PFSS problems with the makespan criteria. They used a quality determination function for

97 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

solutions in the solution population and they used quality values of solutions. They used binary selection,

self-guided two-point crossover, self-guided swap-based mutation mechanism in their proposed GA.

Considering other GA methods for PFSS problems with the makespan criterion, our proposed GA with its

components is distinct. We use a roulette wheel selection mechanism, two-point crossover with repair

function, and inversion-based mutation within our proposed GA. With its distinct features, we tune the

parameters of our proposed GA to increase its performance for PFSS problems with the makespan criterion.

In this section, pseudo-codes and details of the proposed GA are given to the readers. GA is one of the most

known metaheuristics for combinatorial optimization problems. GA is inspired by the evaluation process

in nature. GA has abilities such as stochastic best solution search and generating new solutions from best-

known solutions in its solution pool. The general schema or pseudo-code of the proposed GA is illustrated

in Figure 1.

The selection operation in this proposed GA is the roulette wheel selection method. The pseudo-codes of

evaluation and selection operators are shown in Figure 2. The crossover operator is a stochastic solution

generation method using existing solutions in the matching pool of GA and it takes place after the selection

operator. A solution pair is selected from the matching pool considering their fitness values after selection

operation. Then some substrings of these solutions are exchanged to generate new alternative solutions for

the next step of GA, if a generated random number is less than or equal to the crossover probability of GA.

While exchanging substrings between solutions, newly generated solutions may be disrupted and

unfeasible. Therefore, a repair operator that fixes unfeasible solutions may be needed to have feasible and

good candidate solutions. The pseudo-code of the crossover operator in this proposed GA is illustrated in

Figure 3.

The encoding scheme of this proposed GA is permutation encoding. In this encoding scheme, each

chromosome (solution) is a string of job indices that are illustrated with numbers between 1 and 𝑛. The

repair operator in this GA, simply counts how many times a job is assigned to a solution and then replaces

unassigned jobs to first places of multiple-times assigned jobs. This process goes on until there are no

assigned or multiple-times assigned jobs to remain. The pseudo-code of repair operation of the proposed

GA is illustrated in Figure 4.

The mutation operator is another step of GA and it assures the diversity of the population. In this paper, the

mutation operator is a kind of order chancing or inversion mutation. The pseudo-code of mutation is

illustrated in Figure 5.

Figure 1. The pseudo-code of the proposed genetic algorithm

98 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

Figure 2. The pseudo-code of evaluation and selection operator

Figure 3. The pseudo-code of crossover operator

Figure 4. The pseudo-code of the repair operator

99 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

Figure 5. The pseudo-code of the mutation operator

4. PARAMETER ANALYSIS FOR GENETIC ALGORITHM

In this section, a sensitivity analysis is made for obtaining the most suitable GA parameters that effect

solution quality and elapsed time. The first instance (T001) of Taillard’s [2] flow shop instance is preferred

to make sensitivity analysis. Different population sizes and mutation/crossover probabilities are used 20

times to generate a test database for sensitivity analysis. In the sensitivity analysis; search for mutation

probability 𝑝𝑚 was started from 0.01 and 0.15 with 0.02 increments, for 𝑝𝑐 was started from 0.8 to 0.95

with 0.05 increments, for population size was started from 30 to 150 with 30 increments. The total number

of executions with these different parameters is 3200. Test results are analyzed with ANOVA and Tukey

procedure for makespan values and elapsed times of executions. The ANOVA results for makespan values

obtaining by using different parameters are given in Table 2.

Table 2. Anova results of groups’ population sizes, crossover, and mutation probabilities for 𝐶𝑚𝑎𝑥

Source DF Adj. SS Adj. MS F-Value P-Value

 Population size 4 32184 8046.1 47.55 0.000

 Crossover Prob. 3 305 101.8 0.6 0.614

 Mutation Prob. 7 538955 193323.4 114.19 0.000

Error 3185 135264 169.2

 Lack-of-fit 145 384402 264.8 1.61 0.000

 Pure Error 3040 500553 164.7

Total 3199 706708

As understood from Table 2, the factor of crossover probability has not a significant difference for

makespan values by comparing it with the other two factors because the P-value of the factor of crossover

probability is greater than 0.05. On the other hand, the factors of population size and mutation probability

have significant differences because these factors’ P-values are less than 0.05. The same induction can be

made by seeing the main effects plot for makespan values for these factors illustrated in Figure 6.

100 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

Figure 6. The main effect plot for makespan values of factors

Figure 6 shows that the most significant effect is made by the factor of mutation probability and the factor

of crossover probability does not have an effect on makespan values. Furthermore, there are illustrations

representing the results of Tukey procedures for these factors as seen in Figure 7.

Figure 7. Results of Tukey Procedures for the factors of (a) crossover probability, (b) mutation

probability, and (c) population size

Figure 7 shows that any crossover probability between 0.80 and 0.95 does not affect the makespan. The

remaining two factors except crossover probability have effects on the makespan value. The interval plot

of makespan considering different mutation probabilities and population sizes in Figure 8 shows that the

least average makespan value is found where mutation probability is 0.15 and population size is 150.

Figure 8. Interval plot of makespan values

Population Size

Mutation Prob.

15
0

12
0906030

0,
15

0,
13

0
,11

0
,0
9

0,
07

0
,0
5

0
,0
3

0,
01

0,
15

0,
13

0
,11

0
,0

9
0 ,0

7
0
,0

5
0
,0

3
0,

01
0,

15
0 ,130

,11

0
,0

9
0,
0 7

0
,0

5
0
,0

3
0 ,0

1
0 ,150,

13
0
,11

0
,0

9
0,

07
0
,0

5
0
,0

3
0,
0 1

0,
15

0,
13

0
,11

0
,0
9

0,
07

0
,0
5

0
,0
3

0,
01

1340

1330

1320

1310

1300

1290

C
m

a
x

Interval Plot of Cmax
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

101 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

After these analyses for makespan values obtained by using different GA parameters, the factor crossover

probability may not has a significant difference for makespan. If the same analysis is made for elapsed

times of the same instance with the same intervals of parameters, the ANOVA results in Table 3 show that

the factor of crossover probability has not a significant difference for elapsed times of executions.

Table 3. Annova results of groups’ population sizes, crossover, and mutation probabilities for elapsed

times

Source DF Adj. SS Adj. MS F-Value P-Value

 Population size 4 12333.3 3083.33 34837.28 0.000

 Crossover Prob. 3 0.2 0.07 0.75 0.522

 Mutation Prob. 7 4458.7 636.95 7196.64 0.000

Error 3185 281.9 0.09

 Lack-of-fit 145 209.7 1.45 60.95 0.000

 Pure Error 3040 72.2 0.02

Total 3199 17074.1

The main effect plot for elapsed times for these factors is given in Figure 9 and it shows that the most

significant factor for elapsed times is the population size and the factor of crossover probability has no

effect on elapsed times.

Figure 9. The main effects plot for elapsed time

The results of Tukey procedures of these factors for elapsed times are given in Figure 10 and they show

that the factor of crossover probability has no effect on elapsed times.

Figure 10. Results of Tukey Procedures for the factors of (a) mutation probability, (b) crossover

probability, and (c) population size

102 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

The interval plot of elapsed times considering different mutation probabilities and population sizes in Figure

11 shows that the least average elapsed time is found where mutation probability is 0.01 and population

size is 30.

Figure 11. Interval plot of elapsed times

As a conclusion of these analyses, the factor of crossover probability between 0.80 and 0.95 has no effect

on elapsed time and makespan value of PFSS problems. The main question still exists. Which parameters

are good enough to find a near-optimal solution in a reasonable time period? To find an answer to this

question, the intervals for mutation probabilities and population size must be considered simultaneously

because the analyses show that the factor of crossover probability has no effect. Tables 4 and 5 show

average makespan values and elapsed times of different mutation probabilities and population sizes. By

using this data, Figures 12 and 13 show the interaction of these parameters in view of elapsed times and

makespan values.

Table 4. Average makespan values and elapsed times obtaining by using different population times

Population Size Cmax Avg. Elapsed Time Avg.

30 1309.917 2.472562

60 1304.891 4.179554

90 1303.045 5.768405

120 1302.677 6.736424

150 1300.53 8.102433

Table 5. Average makespan values and elapsed times obtaining by using different mutation probabilities

Mutation Prob. Cmax Avg. Elapsed Time Avg.

0.01 1318.2825 2.932559

0.03 1310.445 4.365031151

0.05 1305.47 5.178598573

0.07 1301.28 5.69600607

0.09 1300.49 6.04521352

0.11 1300.6875 6.301976961

0.13 1298.7175 6.48636089

0.15 1298.3535 6.60922855

Population Size

Mutation Prob.

15
0

12
0906030

0,
15

0,
13

0
,11

0
,0
9

0,
07

0
,0
5

0
,0
3

0,
01

0,
15

0,
13

0
,11

0
,0

9
0 ,0

7
0
,0

5
0
,0

3
0,

01
0,

15
0 ,130

,11

0
,0

9
0,
0 7

0
,0

5
0
,0

3
0 ,0

1
0 ,150,

13
0
,11

0
,0

9
0,

07
0
,0

5
0
,0

3
0,
0 1

0,
15

0,
13

0
,11

0
,0
9

0,
07

0
,0
5

0
,0
3

0,
01

9

8

7

6

5

4

3

2

1

0

E
la

p
se

d
 T

im
e

Interval Plot of Elapsed Time
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

103 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

Figure 12. Comparison of population sizes in view of makespan and elapsed time

Figure 13. Comparison of mutation probabilities in view of makespan and elapsed time

Figure 12 shows the reasonable population size should be less than or equal to 60 and Figure 13 shows that

the reasonable mutation probability is 0.03. While dealing with combinatorial optimization, the speed and

optimality of the solution algorithm are so significant. The decision about the tradeoff between speed and

optimality can be biased in view of a decision-maker. Therefore, this paper suggests that mutation

probability should be 0.15 and population size should be 60. While the number of solutions (population

size) in a population increases, the number of searches and other operations such as evaluation, selection,

crossover, and mutation will be increased and this leads the elapsed time of the algorithm to increase. The

best elapsed time is found where the population size is 30 but the worst makespan value is found with the

same population size. In order to make a tradeoff among 30, 60, 90,120, and 150 population sizes for

elapsed time and makespan, Figure 12 shows interaction among these values, and 60 seems good enough

to have a near-optimal solution in a reasonable time period. The worst makespan and the best elapsed time

is found where the mutation probability is 0.01. If a reader considers Figure 13, he/she can say that 0.03

seems good enough to have a near-optimal solution. However, this paper suggests being biased about

mutation probability because the best average makespan value is found where mutation probability is 0.15

for all population sizes. The same approach can be considered for setting population size as 150 but the

average makespan value where mutation probability is 0.15 is a bit less than the average makespan value

where population size is 150.

104 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

4. PERFORMANCE OF THE PROPOSED GENETIC ALGORITHM

In this section, the results of optimality and speed test of proposed GA by using Taillard’s [2] test instances

including 20, 50, and 100 jobs with 5, 10, and 20 machines are given. The parameters of the proposed GA

are; mutation probability is 0.15, crossover probability is 0.80 and population size is 60. There are n!

possible schedules for a PFSS so the number of iterations should be related to n. Also, the number of

machines m must be considered while solving instances that have the same n value and different m values.

Therefore, this paper suggests the number of iterations can be set as 50(n+m). All test instances were

successively solved fifty times on the same computer. Each time while solving an instance, the proposed

GA used only one core of the CPU. The proposed GA was coded by using the VB.NET programming

language and MS Access database. Also, all test instances were solved and the sensitivity analyses were

made on a standard desktop with i5-7500 CPU and 8GB RAM. Tables 6, 7, and 8 give average makespan

values, best makespan values, the average elapsed times, and optimality of the proposed GA considering

both best and average makespans for all test instances including 20, 50, and 100 jobs, respectively. The

optimality value can be calculated as follows:

𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 = 1 −
𝐶𝑚𝑎𝑥−𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 . (13)

Equation (13) uses the best-known makespan values in the literature. In each of Tables 6,7 and 8, if the

problem has an optimal makespan value, it is marked with an asterisk. If the problem has not an optimal

makespan so far, then the lower bound [53] of that problem is used to calculate the optimality of the

proposed GA.

Table 6. Results of test instances including 20 jobs and different machine numbers

n/m Problem Opt*/ LB Avg. Sol. Best Sol. Avr. elapsed time Avg. Optimality Optimality

20/5 TL001 1278* 1297.4 1278 2.282 0.9848 1.0000

 TL002 1359* 1371.22 1360 2.227 0.9910 0.9993

 TL003 1081* 1104.92 1088 2.150 0.9779 0.9935

 TL004 1293* 1323.84 1305 2.229 0.9761 0.9907

 TL005 1235* 1262.6 1244 2.253 0.9777 0.9927

 TL006 1195* 1222.68 1195 2.240 0.9768 1.0000

 TL007 1234* 1252.08 1239 2.224 0.9853 0.9959

 TL008 1206* 1229.74 1206 2.244 0.9803 1.0000

 TL009 1230* 1261.58 1233 2.245 0.9743 0.9976

 TL010 1108* 1134.46 1111 2.239 0.9761 0.9973

 Avr. 0.9800 0.9967

20/10 TL011 1582* 1649.16 1609 4.504 0.9575 0.9829

 TL012 1659* 1735.78 1684 4.553 0.9537 0.9849

 TL013 1496* 1568.18 1528 4.384 0.9518 0.9786

 TL014 1377* 1449.96 1390 4.569 0.9470 0.9906

 TL015 1419* 1501.72 1441 4.565 0.9417 0.9845

 TL016 1397* 1451.56 1416 4.596 0.9609 0.9864

 TL017 1484* 1540.48 1510 4.544 0.9619 0.9825

 TL018 1538* 1619.2 1574 4.582 0.9472 0.9766

 TL019 1593* 1648.66 1612 4.569 0.9651 0.9881

 TL020 1591* 1647.32 1619 4.532 0.9646 0.9824

 Avr. 0.9551 0.9837

20/20 TL021 2297* 2396.38 2318 10.666 0.9567 0.9909

105 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

 TL022 2099* 2179.54 2135 10.671 0.9616 0.9828

 TL023 2326* 2411.32 2365 10.302 0.9633 0.9832

 TL024 2223* 2315.38 2254 10.689 0.9584 0.9861

 TL025 2291* 2377.96 2328 10.653 0.9620 0.9838

 TL026 2226* 2302.8 2247 10.633 0.9655 0.9906

 TL027 2273* 2357.38 2317 10.188 0.9629 0.9806

 TL028 2200* 2285.78 2228 10.675 0.9610 0.9873

 TL029 2237* 2340.7 2288 10.656 0.9536 0.9772

 TL030 2178* 2287.48 2216 10.615 0.9497 0.9826

 Avr. 0.9595 0.9845

Table 7. Results of test instances including 50 jobs and different machine numbers

n/m Problem Opt*/ LB Avg. Sol. Best Sol. Avr. elapsed time Avg. Optimality Optimality

50/5 TL031 2724* 2745.5 2729 22.111 0,9921 0.9982

 TL032 2834* 2874.32 2838 22.097 0.9858 0.9986

 TL033 2621* 2658.66 2629 21.928 0.9856 0.9969

 TL034 2751* 2797.7 2762 21.855 0.9830 0.9960

 TL035 2863* 2893.5 2864 21.813 0.9893 0.9997

 TL036 2829* 2851.54 2832 21.738 0.9920 0.9989

 TL037 2725* 2762.38 2735 21.808 0.9863 0.9963

 TL038 2683* 2716.66 2694 21.752 0.9875 0.9959

 TL039 2552* 2592.06 2565 21.777 0.9843 0.9949

 TL040 2782* 2795.16 2782 21.733 0.9953 1.0000

 Avr. 0.9881 0.9975

50/10 TL041 2991* 3184.8 3126 40.176 0.9352 0.9549

 TL042 2867* 3069.2 3003 39.829 0.9295 0.9526

 TL043 2839* 3067.18 2976 39.563 0.9196 0.9517

 TL044 3063* 3205.72 3133 39.503 0.9534 0.9771

 TL045 2976* 3184.12 3104 39.487 0.9301 0.9570

 TL046 3006* 3182.16 3082 39.317 0.9414 0.9747

 TL047 3093* 3277.68 3201 39.490 0.9403 0.9651

 TL048 3037* 3182.48 3124 39.487 0.9521 0.9714

 TL049 2897* 3071.58 3008 39.204 0.9397 0.9617

 TL050 3065* 3251.2 3185 39.238 0.9392 0.9608

 Avr. 0.9381 0.9627

50/20 TL051 3771 4164.56 4070 82.418 0.8956 0.9207

 TL052 3668 4029.56 3937 81.903 0.9014 0.9267

 TL053 3591 3982.3 3897 82.065 0.8910 0.9148

 TL054 3635 4038.9 3906 85.700 0.8889 0.9254

 TL055 3553 3997.12 3875 82.392 0.8750 0.9094

 TL056 3667 4009.52 3875 82.203 0.9066 0.9433

 TL057 3672 4033.62 3936 82.496 0.9015 0.9281

 TL058 3627 4040.82 3908 81.571 0.8859 0.9225

 TL059 3645 4073.66 3975 81.818 0.8824 0.9095

 TL060 3696 4071.94 3946 81.682 0.8983 0.9324

 Avr. 0.8927 0.9233

106 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

Table 8. Results of test instances including 100 jobs and different machine numbers

n/m Problem Opt*/ LB Avg. Sol. Best Sol. Avr. elapsed time Avg. Optimality Optimality

100/5 TL061 5493* 5511.78 5495 146,138 0.9966 0.9996

 TL062 5268* 5299.48 5284 145.800 0.9940 0.9970

 TL063 5175* 5222.92 5200 145.037 0.9907 0.9952

 TL064 5014* 5040.3 5029 144.737 0.9948 0.9970

 TL065 5250* 5285.12 5255 142.779 0.9933 0.9990

 TL066 5135* 5162.1 5137 144.586 0.9947 0.9996

 TL067 5246* 5309.34 5264 145.902 0.9879 0.9966

 TL068 5094* 5141.06 5105 145.078 0.9908 0.9978

 TL069 5448* 5508.06 5473 145.368 0.9890 0.9954

 TL070 5322* 5369.84 5342 145.746 0.9910 0.9962

 Avr. 0.9923 0.9973

100/10 TL071 5770* 5990.32 5891 250.429 0.9618 0.9790

 TL072 5349* 5550.42 5456 248.158 0.9623 0.9800

 TL073 5676* 5850.38 5761 246.338 0.9693 0.9850

 TL074 5781* 6037.88 5942 250.578 0.9556 0.9722

 TL075 5467* 5741.7 5614 250.805 0.9498 0.9731

 TL076 5303* 5486.2 5412 248.455 0.9655 0.9794

 TL077 5595* 5774.4 5715 249.876 0.9679 0.9786

 TL078 5617* 5837.6 5777 247.177 0.9607 0.9715

 TL079 5871* 6035.18 5967 250.288 0.9720 0.9836

 TL080 5845* 6036.5 5954 250.179 0.9672 0.9814

 Avr. 0.9632 0.9784

100/20 TL081 6106 6790.18 6636 486.289 0.8879 0.9132

 TL082 6183* 6783.66 6654 485.826 0.9029 0.9238

 TL083 6252 6850.46 6745 481.684 0.9043 0.9211

 TL084 6254 6817.54 6689 482.572 0.9099 0.9304

 TL085 6262 6871.62 6741 477.946 0.9026 0.9235

 TL086 6302 6917.22 6787 498.876 0.9024 0.9230

 TL087 6184 6894.78 6763 475.453 0.8851 0.9064

 TL088 6315 7012.7 6895 483.238 0.8895 0.9082

 TL089 6204 6884.08 6758 484.152 0.8904 0.9107

 TL090 6404 6971.6 6830 476.228 0.9114 0.9335

 Avr. 0.8986 0.9194

In order to be sure about which value is the best between 0.03 and 0.15 mutation probabilities, the same

set of GA parameters except for mutation probability where it is 0.03 are used and the average optimality

of average makespan values was found as 0.9467 and the average optimality of best solutions was found as

0.9646. After sensitivity analyses, the average optimality of average makespan values is 0.9567 and the

average optimality for best solutions is 0.9715. Therefore, setting mutation probability as 0.15 is better than

the number of 0.03.

GA has been one of the strongest metaheuristics for optimization problems. GA has an easily-appliable

structure to optimization problems and three basic parameters. These parameters are population size,

107 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

crossover probability, and mutation probability. Since its performance for any problem depends on the

parameter settings. Therefore, we tuned the parameters of our proposed GA. While the problem’s size (the

numbers of jobs and machines) increases the optimality of the proposed GA decrease gradually because of

the termination criterion. The termination criterion is the number of iterations having a formula of 50(n+m).

As understood from Tables 6,7 and 8, the number of machines in the problem dramatically effects the

optimality. We selected this criterion in the parameter tuning because we wanted a well-tuned parameter

set that can be used in a short running time for the problem.

In order to test the performance of our proposed GA against an existing GA for PFSS problems, we coded

the GA of Pasupathy et al. [22] that was originally coded for a multi-objective PFSS problem. In their GA,

they used binary tournament selection, single-point crossover, and shift mutation mechanisms in their

proposed GA. They suggested crossover probability as 1.0 and mutation probability as 0.1. They did not

state the population size so we use 60 as population size in our version of the GA of Pasupathy et al. [22].

We coded the GA of Pasupathy et al. [22] by using the VB.NET programming language and MS Access

database. And this performance comparison between two algorithms was made on a standard desktop with

i5-7500 CPU and 8GB RAM. For performance evaluation, we selected Taillard’s [2] test instances

including 20, 50, and 100 jobs with 5, 10, and 20 machines. There are 90 instances in our experiment. We

executed each GA five times for each instance. For the termination criterion, we used a well-known elapsed

time calculation formula (𝑡. 𝑛. 𝑚/2) for FPSS problems. In that formula, 𝑡 is a constant for elapsed time

calculation in milliseconds. For performance indicator, we use the formula called average relative

derivation (ARD) from the best known makespan value as follows:

1

90
∑

𝐶𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ 𝑘−𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑘

𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑘
90
𝑘=1 (14)

where 𝐶𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅
𝑖 is the average makespan of instance 𝑘 (𝑘 ∈ {1,2,3, … ,90}) after 5 executions of any GA

method. As understood from Equation (14), the GA method having the lowest ARD score must be better

than the other because it devives less from the best makespan values of instance than the other does.We

used three 𝑡 values (𝑡 ∈ {30, 60,90})) for performance comparison between our proposed GA and GA of

Pasupathy et al. [22]. The ARD values of the two compared algorithms are given in Table 9. As seen from

this experiment, our proposed GA outperforms the other GA proposed by Pasupathy et al. [22]. There was

no parameter setting in the study of Pasupathy et al. [22] for their proposed GA. They just suggested

crossover and mutation probabilities for their proposed GA. Since we tuned GA parameters such as

population size, crossover probability, and mutation probability to our proposed GA, our GA’s performance

was expected to be satisfactory by comparing with another GA without parameter tuning.

Table 9. The ARD values of compared algorithms

Running time Our proposed GA The GA of Pasupathy et al. [22]

30. 𝑛. 𝑚/2 ms 0.0645 0.1400

60. 𝑛. 𝑚/2 ms 0.0583 0.1368

90. 𝑛. 𝑚/2 ms 0.0547 0.1347

5. CONCLUSION

In this paper, a genetic algorithm for permutation flow shop scheduling problems where the objective is to

minimize makespan is proposed and the parameter quality of the proposed GA is tried to increase with

sensitivity analyses. Using the right combinations of parameters in which each of them has different effects

on optimality and elapsed time of the proposed algorithm is so significant for any solution approach

proposed for combinatorial optimization problems. The sensitivity analyses show surprisingly that the

factor of crossover probability does not have an effect on makespan values or elapsed times of the proposed

108 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

GA. Furthermore, the analyses show that the factor of mutation probability has a more significant effect on

the makespan values than others and the factor of population size has a more significant effect on elapsed

times of the proposed algorithm than others. As a conclusion of the discussion after sensitivity analyses,

mutation probability, crossover probability, and population size are suggested as 0.15, 0.80, and 60,

respectively. Using this parameter set in the proposed GA, well-known 90 instances are solved in order to

evaluate the proposed GA’s performance in view of optimality and speed. As a result of this performance

test, the proposed GA has an averagely %97.15 optimality. Furthermore, we compared our proposed GA

with another existing GA for PFSS problems and the experimental results revealed that our GA outperforms

the existing GA in the literature. For future researches, these parameters can be used in the performance

evaluation of other future genetic algorithm approaches. Furthermore, this proposed GA can be investigated

with its suggested parameters for fuzzy flow shop scheduling or other flow shop scheduling problems with

external effects such as learning and deterioration.

CONFLICTS OF INTEREST

No conflict of interest was declared by the author.

REFERENCES

[1] Nawaz, M., Enscore Jr, E. E., Ham, I., “A heuristic algorithm for the m-machine, n-job flow-

shop sequencing problem”, Omega, 11(1): 91–95, (1983).

[2] Taillard, E., “Benchmarks for basic scheduling problems”, European Journal of Operational

Research, 64(2): 278-285, (1993).

[3] Yenisey, M. M., Yagmahan, B., “Multi-objective permutation flow shop scheduling problem:

Literature review, classification and current trends”, Omega, 45: 119–135, (2014).

[4] Hejazi, S. R., Saghafian, S., “Flowshop-scheduling problems with makespan criterion: A

review”, International Journal of Production Research, 43(14): 2895–2929, (2005).

[5] Framinan, J. M., Gupta, J. N. D., Leisten, R., “A review and classification of heuristics for

permutation flow-shop scheduling with makespan objective”, Journal of the Operational

Research Society, 55(12): 1243–1255, (2004).

[6] Framinan, J. M., Leisten, R., Ruiz-Usano, R., “Efficient heuristics for flowshop sequencing with

the objectives of makespan and flowtime minimisation”, European Journal of Operational

Research, 141(3): 559–569, (2002).

[7] Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G., “A particle swarm optimization

algorithm for makespan and total flowtime minimization in the permutation flowshop

sequencing problem”, European Journal of Operational Research, 177(3): 1930–1947, (2007).

[8] Wang, X., Tang, L., “A discrete particle swarm optimization algorithm with self-adaptive

diversity control for the permutation flowshop problem with blocking”, Applied Soft Computing,

12(2): 652–662, (2012).

[9] Chen, C. L., Huang, S. Y., Tzeng, Y. R., Chen, C. L., “A revised discrete particle swarm

optimization algorithm for permutation flow-shop scheduling problem”, Soft Computing,

18(11): 2271–2282, (2014).

109 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

[10] Li, D., Deng, N., “Solving Permutation Flow Shop Scheduling Problem with a cooperative multi-

swarm PSO algorithm”, Journal of Information and Computational Science, 9(4): 977–987,

(2012).

[11] Rajendran, C., Ziegler, H., “Ant-colony algorithms for permutation flowshop scheduling to

minimize makespan/total flowtime of jobs”, European Journal of Operational Research, 155(2):

426–438, (2004).

[12] Ahmadizar, F., “A new ant colony algorithm for makespan minimization in permutation flow

shops”, Computers & Industrial Engineering, 63(2): 355–361, (2012).

[13] Ruiz, R., Stützle, T., “A simple and effective iterated greedy algorithm for the permutation

flowshop scheduling problem”, European Journal of Operational Research, 177(3): 2033–2049,

(2007).

[14] Ruiz, R., Stützle, T., “An Iterated Greedy heuristic for the sequence dependent setup times

flowshop problem with makespan and weighted tardiness objectives”, European Journal of

Operational Research, 187(3): 1143–1159, (2008).

[15] Ribas, I., Companys, R., Tort-Martorell, X., “An iterated greedy algorithm for the flowshop

scheduling problem with blocking”, Omega, 39(3): 293–301, (2011).

[16] Minella, G., Ruiz, R., Ciavotta, M., “Restarted Iterated Pareto Greedy algorithm for multi-

objective flowshop scheduling problems”, Computers & Operations Research, 38(11): 1521–

1533, (2011).

[17] Grabowski, J., Wodecki, M., “A very fast tabu search algorithm for the permutation flow shop

problem with makespan criterion”, Computers & Operations Research, 31(11): 1891–1909,

(2004).

[18] Varadharajan, T. K., Rajendran, C., “A multi-objective simulated-annealing algorithm for

scheduling in flowshops to minimize the makespan and total flowtime of jobs”, European Journal

of Operational Research, 167(3): 772–795, (2005).

[19] Grabowski, J., Pempera, J., “The permutation flow shop problem with blocking. A tabu search

approach”, Omega, 35(3): 302–311, (2007).

[20] Zobolas, G. I., Tarantilis, C. D., Ioannou, G., “Minimizing makespan in permutation flow shop

scheduling problems using a hybrid metaheuristic algorithm”, Computers & Operations

Research, 36(4): 1249–1267, (2009).

[21] Tseng, L.-Y., Lin, Y.-T., “A hybrid genetic local search algorithm for the permutation flowshop

scheduling problem”, European Journal of Operational Research, 198(1): 84–92, (2009).

[22] Pasupathy, T., Rajendran, C., Suresh, R. K., “A multi-objective genetic algorithm for scheduling

in flow shops to minimize the makespan and total flow time of jobs”, International Journal of

Advanced Manufacturing Technology, 27(7–8): 804–815, (2006).

[23] Chen, S.-H., Chang, P.-C., Cheng, T. C. E., Zhang, Q., “A Self-guided Genetic Algorithm for

permutation flowshop scheduling problems”, Computers & Operations Research, 39(7): 1450–

1457, (2012).

[24] Haq, A. N., Ramanan, T. R., Shashikant, K. S., Sridharan, R., “A hybrid neural network-genetic

algorithm approach for permutation flow shop scheduling”, International Journal of Production

Research, 48(14): 4217–4231, (2010).

110 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

[25] Nagano, M. S., Ruiz, R., Lorena, L. A. N., “A Constructive Genetic Algorithm for permutation

flowshop scheduling”, Computers and Industrial Engineering, 55(1): 195–207, (2008).

[26] Rad, S. F., Ruiz, R., Boroojerdian, N., “New high performing heuristics for minimizing

makespan in permutation flowshops”, Omega, 37(2): 331–345, (2009).

[27] Dong, X., Huang, H., Chen, P., “An improved NEH-based heuristic for the permutation flowshop

problem”, Computers & Operations Research, 35(12): 3962–3968, (2008).

[28] Kalczynski, P. J., Kamburowski, J., “An improved NEH heuristic to minimize makespan in

permutation flow shops”, Computers & Operations Research, 35(9): 3001–3008, (2008).

[29] Vázquez-Rodríguez, J. A., Ochoa, G., “On the automatic discovery of variants of the NEH

procedure for flow shop scheduling using genetic programming”, Journal of the Operational

Research Society, 62(2): 381–396, (2011).

[30] Dubois-Lacoste, J., Lpez-Ibez, M., Sttzle, T., “A hybrid TP+PLS algorithm for bi-objective flow-

shop scheduling problems”, Computers & Operations Research, 38(8): 1219–1236, (2011).

[31] Chiang, T.-C., Cheng, H.-C., Fu, L.-C., “NNMA: An effective memetic algorithm for solving

multiobjective permutation flow shop scheduling problems”, Expert Systems with Applications,

38(5): 5986–5999, (2011).

[32] Zheng, T., Yamashiro, M., “Solving flow shop scheduling problems by quantum differential

evolutionary algorithm”, The International Journal of Advanced Manufacturing Technology,

49(5–8): 643–662, (2010).

[33] Vallada, E., Ruiz, R., “Cooperative metaheuristics for the permutation flowshop scheduling

problem”, European Journal of Operational Research, 193(2): 365–376, (2009).

[34] Lin, S.-W., Ying, K.-C., “Minimizing makespan and total flowtime in permutation flowshops by

a bi-objective multi-start simulated-annealing algorithm”, Computers & Operations Research,

40(6): 1625–1647, (2013).

[35] Ribas, I., Companys, R., Tort-Martorell, X., “Comparing three-step heuristics for the

permutation flow shop problem”, Computers & Operations Research, 37(12): 2062–2070,

(2010).

[36] Laha, D., Chakraborty, U. K., “An efficient hybrid heuristic for makespan minimization in

permutation flow shop scheduling”, The International Journal of Advanced Manufacturing

Technology, 44(5–6): 559–569, (2009).

[37] Saravanan, M., Noorul, H. A., Vivekraj, A. R., Prasad, T., “Performance evaluation of the scatter

search method for permutation flowshop sequencing problems”, The International Journal of

Advanced Manufacturing Technology, 37(11–12): 1200–1208, (2008).

[38] Tzeng, Y.-R., Chen, C.-L., “A hybrid EDA with ACS for solving permutation flow shop

scheduling”, International Journal of Advanced Manufacturing Technology, 60(9–12): 1139–

1147, (2012).

[39] Dasgupta, P., Das, S., “A discrete inter-species cuckoo search for flowshop scheduling

problems”, Computers & Operations Research, 60: 111–120, (2015).

111 Oguzhan Ahmet ARIK / GU J Sci, 35(1): 92-111 (2022)

[40] Chen, C.-L., Tzeng, Y.-R., Chen, C.-L., “A new heuristic based on local best solution for

permutation flow shop scheduling”, Applied Soft Computing, 29: 75–81, (2015).

[41] Moslehi, G., Khorasanian, D., “A hybrid variable neighborhood search algorithm for solving the

limited-buffer permutation flow shop scheduling problem with the makespan criterion”,

Computers & Operations Research, 52: 260–268, (2014).

[42] Rajendran, S., Rajendran, C., Leisten, R., “Heuristic rules for tie-breaking in the implementation

of the NEH heuristic for permutation flow-shop scheduling”, International Journal of

Operational Research, 28(1): 87–97, (2017).

[43] Fernandez-Viagas, V., Framinan, J. M., “On insertion tie-breaking rules in heuristics for the

permutation flowshop scheduling problem”, Computers & Operations Research, 45: 60–67,

(2014).

[44] Dubois-Lacoste, J., Pagnozzi, F., Stützle, T., “An iterated greedy algorithm with optimization of

partial solutions for the makespan permutation flowshop problem”, Computers & Operations

Research, 81: 160–166, (2017).

[45] Abdel-Basset, M., Manogaran, G., El-Shahat, D., Mirjalili, S., “A hybrid whale optimization

algorithm based on local search strategy for the permutation flow shop scheduling problem”,

Future Generation Computer Systems, 85: 129–145, (2018).

[46] Benavides, A. J., Ritt, M., “Fast heuristics for minimizing the makespan in non-permutation flow

shops”, Computers & Operations Research, 100: 230–243, (2018).

[47] Chen, Z., Zheng, X., Zhou, S., Liu, C., Chen, H., “Quantum-inspired ant colony optimisation

algorithm for a two-stage permutation flow shop with batch processing machines”, International

Journal of Production Research, 58(19): 5945-5963, (2020).

[48] Kizilay, D., Tasgetiren, M. F., Pan, Q.-K., Gao, L., “A variable block insertion heuristic for

solving permutation flow shop scheduling problem with makespan criterion”, Algorithms, 12:

(5), (2019).

[49] Fernandez-Viagas, V., Framinan, J. M., “A best-of-breed iterated greedy for the permutation

flowshop scheduling problem with makespan objective”, Computers & Operations Research,

112, (2019).

[50] Arık, O. A., “Artificial bee colony algorithm including some components of iterated greedy

algorithm for permutation flow shop scheduling problems”, Neural Computing and Applications,

33: 3469–3486, (2021).

[51] Gmys, J., Mezmaz, M., Melab, N., Tuyttens, D., “A computationally efficient Branch-and-

Bound algorithm for the permutation flow-shop scheduling problem”, European Journal of

Operational Research, 284(3): 814–833, (2020).

[52] Arık, O. A., “Population-based Tabu search with evolutionary strategies for permutation flow

shop scheduling problems under effects of position-dependent learning and linear deterioration”,
Soft Computing, 25(2): 1501–1518, (2021).

[53] Taiilard, E., “Benchmarks for basic scheduling problems.” http://mistic.heig-

vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt. Access date:

30.03.2018

