Research Article
BibTex RIS Cite

Enerji Yitimi Ölçebilen Taşınabilir Anten Analizörü Tabanlı Kuvars Kristal Mikroterazi Ölçüm Sisteminin Tasarımı, Üretimi ve Performans Analizi

Year 2024, Volume: 36 Issue: 1, 437 - 445, 28.03.2024
https://doi.org/10.35234/fumbd.1406375

Abstract

Empedans ölçümü birçok piezoelektrik biyosensörün elektriksel davranışını analiz etmede kritik rol oynayan bir tekniktir. Anten analizörleri, anten sistemlerinin giriş empedansını ölçmek için tasarlanmıştır. Bu çalışmada bir empedans ölçüm sisteminin ne kadar küçük ve taşınabilir olabileceğinin bir kanıtı olarak, tek kartlı bir bilgisayarla kombinasyon halinde bir Kuvars Kristal Mikro Terazi (QCM) biyosensörü için sürüş devresi olarak çalışmak üzere küçük form faktörlü bir anten analizörü yeniden tasarlanmiştır. Seri ve paralel rezonans frekanslarının ve dağılım faktörünün önemli parametrelerinin izlenmesi 10 MHz temel rezonans frekansına sahip bir QCM kristali, sistemin Bovine Serum Albumin (BSA) ve Gliserol çözeltilerinde tespit limitini belirlemiştir. Deneyler sırasında dağılım faktörü ve faz açısı izlenmiştir. Saptama sınırı, fosfat tamponlu salinde (PBS) 20 µg/ml BSA ve 100 ml deiyonize suda 250 µl gliseroldür.

Supporting Institution

Acıbadem Mehmet Ali Aydınlar Üniversitesi

References

  • Johannsmann D. The Quartz Crystal Microbalance in Soft Matter Research : Fundamentals and Modeling, 1st ed. Cham: Springer International Publishing : Imprint: Springer,, 2015, pp. 1 online resource (XX, 387 pages 123.
  • Soewito B. "Designing and Manufacturing Quartz Crystal Oscillators," in Computational Intelligence and Efficiency in Engineering Systems, G. Borowik, Z. Chaczko, W. Jacak, and T. Łuba Eds. Cham: Springer International Publishing, 2015, pp. 293-306.
  • Sauerbrey G. "Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung," Zeitschrift für Physik, vol. 155, no. 2, pp. 206-222, 1959/04/01 1959, doi: 10.1007/BF01337937.
  • Keiji Kanazawa K, Gordon JG. "The oscillation frequency of a quartz resonator in contact with liquid," Anal Chim Acta, vol. 175, pp. 99-105, 1985/01/01/ 1985, doi: https://doi.org/10.1016/S0003-2670(00)82721-X.
  • Voinova MV, Rodahl M, Jonson M, Kasemo B. "Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach," Phys. Scr., vol. 59, no. 5, p. 391, 1999/05/01 1999, doi: 10.1238/Physica.Regular.059a00391.
  • Alassi A, Benammar M, Brett D. "Quartz Crystal Microbalance Electronic Interfacing Systems: A Review," Sensors-Basel, vol. 17, no. 12, p. 2799, 2017. . Available: https://www.mdpi.com/1424-8220/17/12/2799.
  • Arnau A. "A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids," Sensors-Basel, vol. 8, no. 1, pp. 370-411, 2008. . Available: https://www.mdpi.com/1424-8220/8/1/370.
  • Banica F-G. Chemical sensors and biosensors : fundamentals and applications. Chichester, West Sussex, United Kingdom: Wiley, 2012, pp. xxxiii, 541 pages.
  • Kirimli CE, Shih W-H, Shih WY. "DNA hybridization detection with 100 zM sensitivity using piezoelectric plate sensors with an improved noise-reduction algorithm," Analyst, vol. 139, no. 11, pp. 2754-2763, 2014.
  • Kirimli CE, Shih W-H, Shih WY. "Specific in situ hepatitis B viral double mutation (HBVDM) detection in urine with 60 copies ml− 1 analytical sensitivity in a background of 250-fold wild type without DNA isolation and amplification," Analyst, vol. 140, no. 5, pp. 1590-1598, 2015.
  • Kirimli CE, Shih W-H, Shih WY. "Amplification-free in situ KRAS point mutation detection at 60 copies per mL in urine in a background of 1000-fold wild type," Analyst, vol. 141, no. 4, pp. 1421-1433, 2016.
  • Kirimli CE, Shih W-H, Shih WY. "Piezoelectric Plate Sensor (PEPS) for Analysis of Specific KRAS Point Mutations at Low Copy Number in Urine Without DNA Isolation or Amplification," Biosensors and Biodetection: Methods and Protocols, Volume 2: Electrochemical, Bioelectronic, Piezoelectric, Cellular and Molecular Biosensors, pp. 327-348, 2017.
  • Kirimli CE, Elgun E. "A Comparison of Impedance and Antenna Analyzers on the Basis of Machine Learning Assisted Limit of Detection Experiments," in 2022 International Workshop on Impedance Spectroscopy (IWIS), 27-30 Sept. 2022 2022, pp. 61-65, doi: 10.1109/IWIS57888.2022.9975132.
  • Muckley ES, Collins L, Srijanto BR, Ivanov IN. "Machine Learning-Enabled Correlation and Modeling of Multimodal Response of Thin Film to Environment on Macro and Nanoscale Using “Lab-on-a-Crystal”," Adv. Funct. Mater., https://doi.org/10.1002/adfm.201908010 vol. 30, no. 10, p. 1908010, 2020/03/01 2020.
  • Adel M, Allam A, Sayour AE, Ragai HF, Umezu S, Fath El-Bab AMR. "Design and development of a portable low-cost QCM-based system for liquid biosensing," Biomed. Microdevices, vol. 26, no. 1, p. 11, 2024/01/18 2024, doi: 10.1007/s10544-024-00696-0.
  • Beißner S et al., "Low-cost, in-liquid measuring system using a novel compact oscillation circuit and quartz-crystal microbalances (QCMs) as a versatile biosensor platform," J. Sens. Sens. Syst., vol. 6, no. 2, pp. 341-350, 2017, doi: 10.5194/jsss-6-341-2017.
  • Liang J, Zhang J, Wang P, Liu C, Qiu S, Ueda T. "Development of Portable Quartz Crystal Microbalance for Biosensor Applications," Sens. Mater., vol. 28, no. 3, 2016.
  • Muñoz GG et al., "Quartz crystal Microbalance with dissipation monitoring for biomedical applications: Open source and low cost prototype with active temperature control," HardwareX, vol. 14, p. e00416, 2023/06/01/ 2023, doi: https://doi.org/10.1016/j.ohx.2023.e00416.
  • Cetin I, Yilmaz G, Halilibrahimoglu H, Kirimli CE. "“Do It Yourself” Peristaltic Pump and Flowcell for QCM Biosensor," in 2017 21st National Biomedical Engineering Meeting (BIYOMUT), 24 Nov.-26 Dec. 2017 2017, pp. i-iv, doi: 10.1109/BIYOMUT.2017.8479100.
  • Kirimli CE, Elgun E, Unal U. "Machine learning approach to optimization of parameters for impedance measurements of Quartz Crystal Microbalance to improve limit of detection," Biosens. and Bioelectron.: X, vol. 10, p. 100121, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.biosx.2022.100121.
  • Andersson L-O, Rehnström A, Eaker DL. "Studies on “Nonspecific” Binding," Eur. J. Biochem., https://doi.org/10.1111/j.1432-1033.1971.tb01403.x vol. 20, no. 3, pp. 371-380, 1971/06/01 1971.
  • Reimhult K, Petersson K, Krozer A. "QCM-D Analysis of the Performance of Blocking Agents on Gold and Polystyrene Surfaces," Langmuir, vol. 24, no. 16, pp. 8695-8700, 2008/08/01 2008, doi: 10.1021/la800224s.
  • Xiao Y, Isaacs SN. "Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)—not all BSAs are alike," J. Immunol. Methods, vol. 384, no. 1, pp. 148-151, 2012/10/31/ 2012, doi: https://doi.org/10.1016/j.jim.2012.06.009.
  • Dolatshahi-Pirouz A, Rechendorff K, Hovgaard MB, Foss M, Chevallier J, Besenbacher F. "Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D," Colloids Surf. B, vol. 66, no. 1, pp. 53-59, 2008/10/01/ 2008, doi: https://doi.org/10.1016/j.colsurfb.2008.05.010.

Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System with Energy Dissipation

Year 2024, Volume: 36 Issue: 1, 437 - 445, 28.03.2024
https://doi.org/10.35234/fumbd.1406375

Abstract

Impedance measurements play a critical role in analyzing the electrical behavior of piezoelectric biosensors in general. Antenna analyzers are engineered to measure the specific case of input impedance for antenna systems. In this study small form factor antenna analyzer is repurposed to work as driving circuit for a Quartz Crystal Microbalance (QCM) biosensor in combination with a single board computer as an indication of how small and portable an impedance measuring system can be made, while allowing monitoring of important parameters of series and parallel resonance frequencies together with dissipation factor. A QCM crystal with a 10 MHz fundamental resonance frequency is employed to determine the limit of detection of the system in Bovine Serum Albumin (BSA) and glycerol solutions. Dissipation factor and phase angle were monitored during the experiments. Limit of detection is 20 µg/ml BSA in phosphate buffer saline (PBS) and 250 µl of glycerol in 100 ml of deionized water.

References

  • Johannsmann D. The Quartz Crystal Microbalance in Soft Matter Research : Fundamentals and Modeling, 1st ed. Cham: Springer International Publishing : Imprint: Springer,, 2015, pp. 1 online resource (XX, 387 pages 123.
  • Soewito B. "Designing and Manufacturing Quartz Crystal Oscillators," in Computational Intelligence and Efficiency in Engineering Systems, G. Borowik, Z. Chaczko, W. Jacak, and T. Łuba Eds. Cham: Springer International Publishing, 2015, pp. 293-306.
  • Sauerbrey G. "Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung," Zeitschrift für Physik, vol. 155, no. 2, pp. 206-222, 1959/04/01 1959, doi: 10.1007/BF01337937.
  • Keiji Kanazawa K, Gordon JG. "The oscillation frequency of a quartz resonator in contact with liquid," Anal Chim Acta, vol. 175, pp. 99-105, 1985/01/01/ 1985, doi: https://doi.org/10.1016/S0003-2670(00)82721-X.
  • Voinova MV, Rodahl M, Jonson M, Kasemo B. "Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach," Phys. Scr., vol. 59, no. 5, p. 391, 1999/05/01 1999, doi: 10.1238/Physica.Regular.059a00391.
  • Alassi A, Benammar M, Brett D. "Quartz Crystal Microbalance Electronic Interfacing Systems: A Review," Sensors-Basel, vol. 17, no. 12, p. 2799, 2017. . Available: https://www.mdpi.com/1424-8220/17/12/2799.
  • Arnau A. "A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids," Sensors-Basel, vol. 8, no. 1, pp. 370-411, 2008. . Available: https://www.mdpi.com/1424-8220/8/1/370.
  • Banica F-G. Chemical sensors and biosensors : fundamentals and applications. Chichester, West Sussex, United Kingdom: Wiley, 2012, pp. xxxiii, 541 pages.
  • Kirimli CE, Shih W-H, Shih WY. "DNA hybridization detection with 100 zM sensitivity using piezoelectric plate sensors with an improved noise-reduction algorithm," Analyst, vol. 139, no. 11, pp. 2754-2763, 2014.
  • Kirimli CE, Shih W-H, Shih WY. "Specific in situ hepatitis B viral double mutation (HBVDM) detection in urine with 60 copies ml− 1 analytical sensitivity in a background of 250-fold wild type without DNA isolation and amplification," Analyst, vol. 140, no. 5, pp. 1590-1598, 2015.
  • Kirimli CE, Shih W-H, Shih WY. "Amplification-free in situ KRAS point mutation detection at 60 copies per mL in urine in a background of 1000-fold wild type," Analyst, vol. 141, no. 4, pp. 1421-1433, 2016.
  • Kirimli CE, Shih W-H, Shih WY. "Piezoelectric Plate Sensor (PEPS) for Analysis of Specific KRAS Point Mutations at Low Copy Number in Urine Without DNA Isolation or Amplification," Biosensors and Biodetection: Methods and Protocols, Volume 2: Electrochemical, Bioelectronic, Piezoelectric, Cellular and Molecular Biosensors, pp. 327-348, 2017.
  • Kirimli CE, Elgun E. "A Comparison of Impedance and Antenna Analyzers on the Basis of Machine Learning Assisted Limit of Detection Experiments," in 2022 International Workshop on Impedance Spectroscopy (IWIS), 27-30 Sept. 2022 2022, pp. 61-65, doi: 10.1109/IWIS57888.2022.9975132.
  • Muckley ES, Collins L, Srijanto BR, Ivanov IN. "Machine Learning-Enabled Correlation and Modeling of Multimodal Response of Thin Film to Environment on Macro and Nanoscale Using “Lab-on-a-Crystal”," Adv. Funct. Mater., https://doi.org/10.1002/adfm.201908010 vol. 30, no. 10, p. 1908010, 2020/03/01 2020.
  • Adel M, Allam A, Sayour AE, Ragai HF, Umezu S, Fath El-Bab AMR. "Design and development of a portable low-cost QCM-based system for liquid biosensing," Biomed. Microdevices, vol. 26, no. 1, p. 11, 2024/01/18 2024, doi: 10.1007/s10544-024-00696-0.
  • Beißner S et al., "Low-cost, in-liquid measuring system using a novel compact oscillation circuit and quartz-crystal microbalances (QCMs) as a versatile biosensor platform," J. Sens. Sens. Syst., vol. 6, no. 2, pp. 341-350, 2017, doi: 10.5194/jsss-6-341-2017.
  • Liang J, Zhang J, Wang P, Liu C, Qiu S, Ueda T. "Development of Portable Quartz Crystal Microbalance for Biosensor Applications," Sens. Mater., vol. 28, no. 3, 2016.
  • Muñoz GG et al., "Quartz crystal Microbalance with dissipation monitoring for biomedical applications: Open source and low cost prototype with active temperature control," HardwareX, vol. 14, p. e00416, 2023/06/01/ 2023, doi: https://doi.org/10.1016/j.ohx.2023.e00416.
  • Cetin I, Yilmaz G, Halilibrahimoglu H, Kirimli CE. "“Do It Yourself” Peristaltic Pump and Flowcell for QCM Biosensor," in 2017 21st National Biomedical Engineering Meeting (BIYOMUT), 24 Nov.-26 Dec. 2017 2017, pp. i-iv, doi: 10.1109/BIYOMUT.2017.8479100.
  • Kirimli CE, Elgun E, Unal U. "Machine learning approach to optimization of parameters for impedance measurements of Quartz Crystal Microbalance to improve limit of detection," Biosens. and Bioelectron.: X, vol. 10, p. 100121, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.biosx.2022.100121.
  • Andersson L-O, Rehnström A, Eaker DL. "Studies on “Nonspecific” Binding," Eur. J. Biochem., https://doi.org/10.1111/j.1432-1033.1971.tb01403.x vol. 20, no. 3, pp. 371-380, 1971/06/01 1971.
  • Reimhult K, Petersson K, Krozer A. "QCM-D Analysis of the Performance of Blocking Agents on Gold and Polystyrene Surfaces," Langmuir, vol. 24, no. 16, pp. 8695-8700, 2008/08/01 2008, doi: 10.1021/la800224s.
  • Xiao Y, Isaacs SN. "Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)—not all BSAs are alike," J. Immunol. Methods, vol. 384, no. 1, pp. 148-151, 2012/10/31/ 2012, doi: https://doi.org/10.1016/j.jim.2012.06.009.
  • Dolatshahi-Pirouz A, Rechendorff K, Hovgaard MB, Foss M, Chevallier J, Besenbacher F. "Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D," Colloids Surf. B, vol. 66, no. 1, pp. 53-59, 2008/10/01/ 2008, doi: https://doi.org/10.1016/j.colsurfb.2008.05.010.
There are 24 citations in total.

Details

Primary Language English
Subjects Biomedical Diagnosis, Medical Devices
Journal Section MBD
Authors

Ceyhun Ekrem Kirimli 0000-0001-7470-0059

Publication Date March 28, 2024
Submission Date December 18, 2023
Acceptance Date March 19, 2024
Published in Issue Year 2024 Volume: 36 Issue: 1

Cite

APA Kirimli, C. E. (2024). Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System with Energy Dissipation. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(1), 437-445. https://doi.org/10.35234/fumbd.1406375
AMA Kirimli CE. Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System with Energy Dissipation. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. March 2024;36(1):437-445. doi:10.35234/fumbd.1406375
Chicago Kirimli, Ceyhun Ekrem. “Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System With Energy Dissipation”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, no. 1 (March 2024): 437-45. https://doi.org/10.35234/fumbd.1406375.
EndNote Kirimli CE (March 1, 2024) Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System with Energy Dissipation. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 1 437–445.
IEEE C. E. Kirimli, “Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System with Energy Dissipation”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 1, pp. 437–445, 2024, doi: 10.35234/fumbd.1406375.
ISNAD Kirimli, Ceyhun Ekrem. “Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System With Energy Dissipation”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/1 (March 2024), 437-445. https://doi.org/10.35234/fumbd.1406375.
JAMA Kirimli CE. Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System with Energy Dissipation. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:437–445.
MLA Kirimli, Ceyhun Ekrem. “Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System With Energy Dissipation”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 1, 2024, pp. 437-45, doi:10.35234/fumbd.1406375.
Vancouver Kirimli CE. Design, Fabrication and Performance Analysis of a Portable, Antenna Analyzer Based, Quartz Crystal Microbalance Measuring System with Energy Dissipation. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(1):437-45.