Research Article
BibTex RIS Cite

Cryogenic Heat Treatment of Electro Discharge Machining Electrode Tooling Investigation of Performance

Year 2024, Volume: 36 Issue: 1, 447 - 458, 28.03.2024
https://doi.org/10.35234/fumbd.1408353

Abstract

In this study, the machining performance of the electrode material used in the Electro Discharge Machining (EDM) of Ti-6Al-4V alloy was investigated as a result of cryogenic treatment. Within the scope of the study, electrodes selected from brass material were subjected to cryogenic treatment with a cycle between [Room temperature / -184°C / Room temperature]. In the experiments, the most effective process parameters such as discharge current (Ip), pulse on time (Ton), pulse off time (Toff) and gap voltage (Vg) were selected as variables with brass and cryogenic brass electrodes. As a result of the experiments, the re-solidified layer thickness, material removal rate and taper angle, which determine the product quality, were measured and evaluated. As a result of the cryogenic treatment applied to the electrodes, it was found that positive improvements in EEI performance were obtained. It was concluded that re-solidified layer thickness, material removal rate, tool wear rate and bevel amount ratios are positively affected by discharge current, gap voltage and pulse on time and negatively affected by pulse off time.

Project Number

FÜBAP TEKF.17.11

References

  • Ay M, Yücelişli F. Ti-6Al-4V Alaşımının Fiber Lazer ile Kesilmesinde İşlem Parametrelerinin Kesim Kalitesine Etkisinin Araştırılması. Fırat Üniv. Müh. Bil. Dergisi 2018; 30 (2): 215-223
  • Hascalık A, Caydas U. A comparative study of surface integrity of Ti-6Al-4V alloy machined by EDM and AECG. Journal of Materials Processing Technology 2007;190: 173–180. Doi:10.1016/j.jmatprotec.2007.02.048
  • Jafferson JM, Hariharan P. Machining Performance of Cryogenically Treated Electrodes in Microelectric Discharge Machining: A Comparative Experimental Study, Materials and Manufacturing Processes 2013; 28: 397–402. Doi: 10.1080/10426914.2013.763955
  • Bhaduri, D, Kuar AS, Sarkar S, Biswa SK, Mitra S. Electro discharge machining of titanium nitride-aluminium oxide composite for optimum process criteria yield. Materials and Manufacturing Processes 2009; 24: 1312–1320.
  • Seo YW, Kim D, Ramulu M. Electrical discharge machining of functionally graded 15–35 vol% SiCp/Al Composites. Materials and Manufacturing Processes 2006; 21 (5): 479–487. Doi: 10.1080/10426910500471482
  • Chakravorty R, Kumar Gauri S, Chakraborty S. Optimization of correlated responses of EDM process. Materials and Manufacturing Processes 2012; 27: 337–347. Doi: 10.1080/10426914.2011.577875
  • Rajurkar KP, Yu ZY. 3D micro-EDM using CAD/CAM. CIRP Annals–Manufacturing Technology 2000; 49(1): 127-130. Doi:10.1016/S0007-8506(07)62911-4
  • Pandey A, Singh S. Current research trends in variants of Electrical Discharge Machining: A review. International Journal of Engineering Science and Technology 2010; 2(6): 2172–2191
  • Medellin HI, DeLange DF, Morales J, Flores A. Experimental study on electro discharge machining in water of D2 tool steel using two different lectrode materials. Proc.Inst.Mech.Eng.,PartB:J.Eng.Manuf 2009; 223(11): 1423–1430. Doi:10.1243/09544054JEM1573
  • Yan BH, Tsai HC, Huang FY. The effect in EDM of a dielectric of aurea solution in water on modifying the surface of titanium. Int. J. Mach.Tools Manuf 2005; 45: 194–200. Doi: 10.1016/j.ijmachtools.2004.07.006
  • Chow HM, Yan BH, Huang FY, Hung JC. Study of added powder in kerosene for the micro-slit machining of Titanium alloy using electro-discharge machining. J.Mater.Process Technol 2000;101: 95–103. Doi:10.1016/S0924-0136(99)00458-6
  • Altuntaş G, Kaplan ÖF, Bostan B. Investigation of the Effect of Tempering and Cryogenic Treatment on Mechanical Properties of Boron Steels. Gazi University Journal of Science Part C: Design and Technology 2023; 11(2): 300-308. Doi: 10.29109/gujsc.1271368
  • Reitz. W, Pendray J. Cryo-processing of materials: A review of current status, Journal of materials and Manufacturing process 2001; 16(6): 829-840. Doi:10.1081/AMP-100108702
  • Altuntaş G, Altuntaş O, Bostan B. Evaluation of the Effect of Shallow Cryogenic Treatment on Tribological Properties and Microstructure of High Manganese Steel. International Journal of Metalcasting 2023; 1-12. Doi: 10.1007/s40962-023-01131-5
  • Altuntaş, G., Özdemir, A. T., & Bostan, B. A survey of the effect of cryogenic treatment and natural ageing on structural changes and second-phase precipitation in Al–Zn–Mg–Cu alloy. Journal of Thermal Analysis and Calorimetry 2023; 148(20):10713-10725. Doi:10.1007/s10973-023-12414-8
  • Zhirafar S, Rezaeian A, Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel. J. Mater. Process. Technol 2007; 186 (1): 298– 303. Doi: 10.1016/j.jmatprotec.2006.12.046
  • Yong AYL, Seah KHW, Rahman M. Performance evaluation of cryogenically treated tungsten carbide tools in turning. International Journal of Machine Tools and Manufacture 2006; 46(15): 2051–2056. Doi:10.1016/j.ijmachtools.2006.01.002
  • Seah KHW, Rahman M, Yong KH. Performance evaluation of cryogenically treated tungsten carbide cutting tool inserts. Proceedings of the Institution of Mechanical Engineers Part B–Journal of Engineering Manufacture 217 (1) (2003) 29–43. Doi:10.1243/095440503762502260
  • Nalbant M, Yıldız Y. Effect of cryogenic cooling in milling process of AISI 304 stainless steel, Transactions of Nonferrous Metals Society of China 2011; 21(1): 72-79. Doi:10.1016/S1003-6326(11)60680-8
  • Sing A, Grover NK. Wear Properties of Cryogenic Treated Electrodes on Machining Of En-31. Materials Today: Proceedings 22015; 2: 1406 – 1413. Doi:10.1016/j.matpr.2015.07.060
  • Kumar A, Maheshwari S, Sharma C, Beri N. Machining Efficiency Evaluation of Cryogenically Treated Copper Electrode in Additive Mixed EDM. Materials and Manufacturing Processes 2012; 27(10): 1051–1058. Doi:10.1080/10426914.2011.654151
  • Jafferson JM, Hariharan P, Machining performance of cryogenically treated electrodes in micro electric discharge machining: a comparative study. Mater Manuf. Process 2013; 28(4): 397–402. Doi:10.1080/10426914.2013.763955
  • Gill SS, Singh J. Effect of deep cryogenic treatment on machinability of titanium alloy (Ti-6246) in electric discharge drilling, Mater. Manuf. Process 2010; 25(6): 378–385. Doi:10.1080/10426910903179914
  • Yıldız Y, Sundaram MM, Rajurkar KP, Nalban M. The Effects of Cold and Cryogenic Treatments on the Machinability of Beryllium-Copper Alloy in Electro Discharge Machining. Proceedings of 44th CIRP Conference on Manufacturing Systems; 1-3 June 2011; Madison, Wisconsin, USA.
  • Naveed A, Kashif I, Khaja M, Rafaqat A, Naif AS. Machinability of titanium alloy through electric discharge machining. Materıals and Manufacturıng Processes 2019; 34 (1): 93-102 Doi: 0.1080/10426914.2018.1532092
  • S. Dhanabalan, K. Sıvakumar, C. Sathıya Narayanan. Journal of Engineering Science and Technology 2015; 10 (1): 72-80
  • Kumar S, Batish A, Sing, Singh T P. A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. Journal of Mechanical Science and Technology 2014; 28: 2831-2844.
  • Datta S, Biswal BB, Mahapatra SS. Electrical discharge machining of Inconel 825 using cryogenically treated copper electrode: emphasis on surface integrity and metallurgical characteristics. Journal of Manufacturing Processes 2017; 26: 188-202.
  • Govindan P, Joshi Suhas S. Experimental characterization of material removal in dry electrical discharge drilling. International Journal of Machine Tools and Manufacture 2010; 50.5: 431-443. Doi: 10.1016/j.ijmachtools.2010.02.004
  • Dave HK, Mathai VJ, Desai KP, Raval HK. Studies on quality of microholes generated on Al 1100 using micro-electro-discharge machining process. The International Journal of Advanced Manufacturing Technology 2015, 76: 127-140. Doi: 10.1007/s00170-013-5542-4
  • Kalyon A. Elektro Erozyon ile İşlemede Yüzey Pürüzlülüğü ve İş Parçası İşleme Hızının Alüminyum Alaşımı İçin Taguchi Tekniği ile Optimizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2019; 21(62): 595-605. Doi:10.21205/deufmd.2019216223
  • Isaak CJ, Reitz W. The effects of cryogenic treatment on the thermal conductivity of GRCop-84. Mater Manuf Processes 2008;23(1):82–91. Doi:10.1080/10426910701524626
  • Kalsi NS, Sehgal R, Sharma VS. Cryogenic treatment of tool materials: a review. Mater Manuf Processes 2010; 25(10): 1077–100. Doi:10.1080/10426911003720862
  • Manivannan R, Kumar MP. Multi-response optimization of Micro-EDM process parameters on AISI304 steel using TOPSIS. Journal of Mechanical Science and Technology 2016; 30 (1): 137-144. Doi: 10.1007/s12206-015-1217-4

Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması

Year 2024, Volume: 36 Issue: 1, 447 - 458, 28.03.2024
https://doi.org/10.35234/fumbd.1408353

Abstract

Bu çalışmada, Ti-6Al-4V alaşımının elektro erozyon ile işleme (EEİ) tezgâhında kullanılan elektrot malzemesinin kriyojenik işlem sonucunda takımın işleme performansı araştırılmıştır. Çalışma kapsamında, pirinç malzemeden seçilen elektrotlar [Oda sıcaklığı / −184°C / Oda sıcaklığı] arasında bir çevrim ile kriyojenik işleme tabi tutulmuştur. Deneylerde pirinç ve kriyojenik pirinç elektrotlarla boşalım akımı (Ip), vurum süresi (Ton), bekleme süresi (Toff) ve boşluk voltaj (Vg) gibi en etkili işlem parametreleri değişken seçilmiştir. Deneyler sonucunda ürün kalitesini belirleyen, tekrar katılaşan katman kalınlığı, malzeme kaldırma oranı ve koniklik açısı ölçümleri yapılarak değerlendirilmiştir. Elektrotlara uygulanan kriyojenik işlem sonucunda, EEİ işlem performansında pozitif iyileşmeler elde edildiği tespit edilmiştir. Tekrar katılaşan katman kalınlığı, malzeme kaldırma oranı ve koniklik miktarı oranlarının Ip, Vg ve Ton pozitif yönde Toff ise negatif yönde etki ettiği sonucuna varılmıştır.

Project Number

FÜBAP TEKF.17.11

References

  • Ay M, Yücelişli F. Ti-6Al-4V Alaşımının Fiber Lazer ile Kesilmesinde İşlem Parametrelerinin Kesim Kalitesine Etkisinin Araştırılması. Fırat Üniv. Müh. Bil. Dergisi 2018; 30 (2): 215-223
  • Hascalık A, Caydas U. A comparative study of surface integrity of Ti-6Al-4V alloy machined by EDM and AECG. Journal of Materials Processing Technology 2007;190: 173–180. Doi:10.1016/j.jmatprotec.2007.02.048
  • Jafferson JM, Hariharan P. Machining Performance of Cryogenically Treated Electrodes in Microelectric Discharge Machining: A Comparative Experimental Study, Materials and Manufacturing Processes 2013; 28: 397–402. Doi: 10.1080/10426914.2013.763955
  • Bhaduri, D, Kuar AS, Sarkar S, Biswa SK, Mitra S. Electro discharge machining of titanium nitride-aluminium oxide composite for optimum process criteria yield. Materials and Manufacturing Processes 2009; 24: 1312–1320.
  • Seo YW, Kim D, Ramulu M. Electrical discharge machining of functionally graded 15–35 vol% SiCp/Al Composites. Materials and Manufacturing Processes 2006; 21 (5): 479–487. Doi: 10.1080/10426910500471482
  • Chakravorty R, Kumar Gauri S, Chakraborty S. Optimization of correlated responses of EDM process. Materials and Manufacturing Processes 2012; 27: 337–347. Doi: 10.1080/10426914.2011.577875
  • Rajurkar KP, Yu ZY. 3D micro-EDM using CAD/CAM. CIRP Annals–Manufacturing Technology 2000; 49(1): 127-130. Doi:10.1016/S0007-8506(07)62911-4
  • Pandey A, Singh S. Current research trends in variants of Electrical Discharge Machining: A review. International Journal of Engineering Science and Technology 2010; 2(6): 2172–2191
  • Medellin HI, DeLange DF, Morales J, Flores A. Experimental study on electro discharge machining in water of D2 tool steel using two different lectrode materials. Proc.Inst.Mech.Eng.,PartB:J.Eng.Manuf 2009; 223(11): 1423–1430. Doi:10.1243/09544054JEM1573
  • Yan BH, Tsai HC, Huang FY. The effect in EDM of a dielectric of aurea solution in water on modifying the surface of titanium. Int. J. Mach.Tools Manuf 2005; 45: 194–200. Doi: 10.1016/j.ijmachtools.2004.07.006
  • Chow HM, Yan BH, Huang FY, Hung JC. Study of added powder in kerosene for the micro-slit machining of Titanium alloy using electro-discharge machining. J.Mater.Process Technol 2000;101: 95–103. Doi:10.1016/S0924-0136(99)00458-6
  • Altuntaş G, Kaplan ÖF, Bostan B. Investigation of the Effect of Tempering and Cryogenic Treatment on Mechanical Properties of Boron Steels. Gazi University Journal of Science Part C: Design and Technology 2023; 11(2): 300-308. Doi: 10.29109/gujsc.1271368
  • Reitz. W, Pendray J. Cryo-processing of materials: A review of current status, Journal of materials and Manufacturing process 2001; 16(6): 829-840. Doi:10.1081/AMP-100108702
  • Altuntaş G, Altuntaş O, Bostan B. Evaluation of the Effect of Shallow Cryogenic Treatment on Tribological Properties and Microstructure of High Manganese Steel. International Journal of Metalcasting 2023; 1-12. Doi: 10.1007/s40962-023-01131-5
  • Altuntaş, G., Özdemir, A. T., & Bostan, B. A survey of the effect of cryogenic treatment and natural ageing on structural changes and second-phase precipitation in Al–Zn–Mg–Cu alloy. Journal of Thermal Analysis and Calorimetry 2023; 148(20):10713-10725. Doi:10.1007/s10973-023-12414-8
  • Zhirafar S, Rezaeian A, Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel. J. Mater. Process. Technol 2007; 186 (1): 298– 303. Doi: 10.1016/j.jmatprotec.2006.12.046
  • Yong AYL, Seah KHW, Rahman M. Performance evaluation of cryogenically treated tungsten carbide tools in turning. International Journal of Machine Tools and Manufacture 2006; 46(15): 2051–2056. Doi:10.1016/j.ijmachtools.2006.01.002
  • Seah KHW, Rahman M, Yong KH. Performance evaluation of cryogenically treated tungsten carbide cutting tool inserts. Proceedings of the Institution of Mechanical Engineers Part B–Journal of Engineering Manufacture 217 (1) (2003) 29–43. Doi:10.1243/095440503762502260
  • Nalbant M, Yıldız Y. Effect of cryogenic cooling in milling process of AISI 304 stainless steel, Transactions of Nonferrous Metals Society of China 2011; 21(1): 72-79. Doi:10.1016/S1003-6326(11)60680-8
  • Sing A, Grover NK. Wear Properties of Cryogenic Treated Electrodes on Machining Of En-31. Materials Today: Proceedings 22015; 2: 1406 – 1413. Doi:10.1016/j.matpr.2015.07.060
  • Kumar A, Maheshwari S, Sharma C, Beri N. Machining Efficiency Evaluation of Cryogenically Treated Copper Electrode in Additive Mixed EDM. Materials and Manufacturing Processes 2012; 27(10): 1051–1058. Doi:10.1080/10426914.2011.654151
  • Jafferson JM, Hariharan P, Machining performance of cryogenically treated electrodes in micro electric discharge machining: a comparative study. Mater Manuf. Process 2013; 28(4): 397–402. Doi:10.1080/10426914.2013.763955
  • Gill SS, Singh J. Effect of deep cryogenic treatment on machinability of titanium alloy (Ti-6246) in electric discharge drilling, Mater. Manuf. Process 2010; 25(6): 378–385. Doi:10.1080/10426910903179914
  • Yıldız Y, Sundaram MM, Rajurkar KP, Nalban M. The Effects of Cold and Cryogenic Treatments on the Machinability of Beryllium-Copper Alloy in Electro Discharge Machining. Proceedings of 44th CIRP Conference on Manufacturing Systems; 1-3 June 2011; Madison, Wisconsin, USA.
  • Naveed A, Kashif I, Khaja M, Rafaqat A, Naif AS. Machinability of titanium alloy through electric discharge machining. Materıals and Manufacturıng Processes 2019; 34 (1): 93-102 Doi: 0.1080/10426914.2018.1532092
  • S. Dhanabalan, K. Sıvakumar, C. Sathıya Narayanan. Journal of Engineering Science and Technology 2015; 10 (1): 72-80
  • Kumar S, Batish A, Sing, Singh T P. A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. Journal of Mechanical Science and Technology 2014; 28: 2831-2844.
  • Datta S, Biswal BB, Mahapatra SS. Electrical discharge machining of Inconel 825 using cryogenically treated copper electrode: emphasis on surface integrity and metallurgical characteristics. Journal of Manufacturing Processes 2017; 26: 188-202.
  • Govindan P, Joshi Suhas S. Experimental characterization of material removal in dry electrical discharge drilling. International Journal of Machine Tools and Manufacture 2010; 50.5: 431-443. Doi: 10.1016/j.ijmachtools.2010.02.004
  • Dave HK, Mathai VJ, Desai KP, Raval HK. Studies on quality of microholes generated on Al 1100 using micro-electro-discharge machining process. The International Journal of Advanced Manufacturing Technology 2015, 76: 127-140. Doi: 10.1007/s00170-013-5542-4
  • Kalyon A. Elektro Erozyon ile İşlemede Yüzey Pürüzlülüğü ve İş Parçası İşleme Hızının Alüminyum Alaşımı İçin Taguchi Tekniği ile Optimizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2019; 21(62): 595-605. Doi:10.21205/deufmd.2019216223
  • Isaak CJ, Reitz W. The effects of cryogenic treatment on the thermal conductivity of GRCop-84. Mater Manuf Processes 2008;23(1):82–91. Doi:10.1080/10426910701524626
  • Kalsi NS, Sehgal R, Sharma VS. Cryogenic treatment of tool materials: a review. Mater Manuf Processes 2010; 25(10): 1077–100. Doi:10.1080/10426911003720862
  • Manivannan R, Kumar MP. Multi-response optimization of Micro-EDM process parameters on AISI304 steel using TOPSIS. Journal of Mechanical Science and Technology 2016; 30 (1): 137-144. Doi: 10.1007/s12206-015-1217-4
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Machining, Optimization in Manufacturing
Journal Section MBD
Authors

Mustafa Ay 0000-0002-9056-9975

Savaş Apak This is me 0009-0000-9042-5771

Project Number FÜBAP TEKF.17.11
Publication Date March 28, 2024
Submission Date December 22, 2023
Acceptance Date March 27, 2024
Published in Issue Year 2024 Volume: 36 Issue: 1

Cite

APA Ay, M., & Apak, S. (2024). Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(1), 447-458. https://doi.org/10.35234/fumbd.1408353
AMA Ay M, Apak S. Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. March 2024;36(1):447-458. doi:10.35234/fumbd.1408353
Chicago Ay, Mustafa, and Savaş Apak. “Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, no. 1 (March 2024): 447-58. https://doi.org/10.35234/fumbd.1408353.
EndNote Ay M, Apak S (March 1, 2024) Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 1 447–458.
IEEE M. Ay and S. Apak, “Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 1, pp. 447–458, 2024, doi: 10.35234/fumbd.1408353.
ISNAD Ay, Mustafa - Apak, Savaş. “Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/1 (March 2024), 447-458. https://doi.org/10.35234/fumbd.1408353.
JAMA Ay M, Apak S. Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:447–458.
MLA Ay, Mustafa and Savaş Apak. “Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 1, 2024, pp. 447-58, doi:10.35234/fumbd.1408353.
Vancouver Ay M, Apak S. Kriyojenik İşlem Uygulanan Elektro Erozyon Elektrot Takımının Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(1):447-58.