Araştırma Makalesi
BibTex RIS Kaynak Göster

Design and Manufacturing Ankle Foot Prosthetics for Patients with Transtibial Amputation

Yıl 2024, Cilt: 7 Sayı: (Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023), 54 - 59, 25.02.2024
https://doi.org/10.33438/ijdshs.1371603

Öz

Rapid Prototyping (RP) is a technology used to incrementally shape products or add material using 3D printing equipment. 3D printing is extensively utilized throughout several industries, particularly in the medical sector. This study aims to make a valuable contribution to the field by specifically focusing on the manufacturing of foot prosthetics for patients who have undergone below-knee amputations. The design step on Solidwork software is initiated, followed by the realization of the chosen design utilizing a 3D printing machine, which utilizes PLA as the preferred material. The main focus of this study is to optimize the manufacturing process in order to determine the parameters that result in the most effective production of foot prosthesis, while minimizing the time required for machining. Optimization analysis revealed that the most effective parameters for producing PLA foot prosthesis using a 3D printing machine are a layer height of 0.1 mm, infill density of 100%, print speed of 100 mm/s, and nozzle temperature of 210°C. These adjusted parameters are essential benchmarks for the production sector of foot prostheses.

Kaynakça

  • Amirreza Naseri, Majid Mohammadi Moghaddam, Martin Grimmer, M. A. S. (2023). Passive hydraulic prosthetic foot to improve the push-off during walking. Mechanism and Machine Theory, 172. [CrossRef]
  • Cherelle, P., Grosu, V., Flynn, L., Junius, K., Moltedo, M., Vanderborght, B., & Lefeber, D. (2017). The Ankle Mimicking Prosthetic Foot 3—Locking mechanisms, actuator design, control and experiments with an amputee. Robotics and Autonomous Systems, 91, 327–336. [CrossRef]
  • Childers, W. L., & Takahashi, K. Z. (2018). Increasing prosthetic foot energy return affects whole-body mechanics during walking on level ground and slopes. Scientific Reports, 8(1). [CrossRef]
  • DeWees, T. (2019). Transtibial prosthetics. Orthotics and Prosthetics in Rehabilitation, 605–634. [CrossRef]
  • Dianlei Han, Rui Zhang, Qingqiu Cao, Lei Jiang, J. L. (2021). Research in the mechanical model of bionic foot intruding into sands with different physical characteristics. Journal of Terramechanics, 98. [CrossRef]
  • Emily S. Matijevich, Eric C. Honert, Yang Fan, Gilbert Lam, B. M. N. (2022). A foot and footwear mechanical power theoretical framework: Towards understanding energy storage and return in running footwear. Journal of Biomechanics, 141. [CrossRef]
  • Fylstra, B. L., Lee, I. C., Huang, S., Brandt, A., Lewek, M. D., & Huang, H. (Helen). (2020). Human-prosthesis coordination: A preliminary study exploring coordination with a powered ankle-foot prosthesis. Clinical Biomechanics, 80(January), 105171. [CrossRef]
  • Hoque, M. E., Riham, S. A. H., & Shuvo, M. A. A. (2023). A cost-effective prosthetic leg: Design and development. Hybrid Advances, 2(October 2022), 100017. [CrossRef]
  • Kieran M. Nichols, P. G. A. (2023). Sensitivity of lower-limb joint mechanics to prosthetic forefoot stiffness with a variable stiffness foot in level-ground walking. Journal of Biomechanics, 147. [CrossRef]
  • Lestari, W. D., & Adyono, N. (2022). Analysis of Ankle-Foot Design for Transtibial Prosthesis Components to Increase The Flexibility using the Finite Element Method. TEKNIK, 43(3), 272–279. [CrossRef]
  • Proebsting, E., Altenburg, B., Bellmann, M., Schmalz, T., & Krug, K. (2020). Effects on prosthetic foot ankle power on transfemoral amputee gait. Gait & Posture, 81, 285–286. [CrossRef]
  • ,Rui Zhang, Xumin Sun, Dianlei Han, Rui Zhang, Hua Zhang, Jia Ma, Lige Wen, M. Z. (2023). A bionic mechanical foot with adaptive variable postures travelling on sand. Journal of Terramechanics, 107. [CrossRef]
  • Schlafly, M., & Reed, K. B. (2020). Novel passive ankle-foot prosthesis mimics able-bodied ankle angles and ground reaction forces. Clinical Biomechanics, 72, 202–210. [CrossRef]
  • Umesh K. Dwivedi, Shashank Mishra, V. P. (2023). Rapid prototyping. In Advances in Biomedical Polymers and Composites (pp. 315–341). [CrossRef]
  • Yu, C. huang, Hung, Y. C., Lin, Y. H., Chen, G. X., Wei, S. H., Huang, C. H., & Chen, C. S. (2014). A 3D mathematical model to predict spinal joint and hip joint force for trans-tibial amputees with different SACH foot pylon adjustments. Gait and Posture, 40(4), 545–548. [CrossRef] Zelik, K. E., & Honert, E. C. (2018). Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment. Journal of Biomechanics, 75, 1–12. [CrossRef]
Yıl 2024, Cilt: 7 Sayı: (Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023), 54 - 59, 25.02.2024
https://doi.org/10.33438/ijdshs.1371603

Öz

Kaynakça

  • Amirreza Naseri, Majid Mohammadi Moghaddam, Martin Grimmer, M. A. S. (2023). Passive hydraulic prosthetic foot to improve the push-off during walking. Mechanism and Machine Theory, 172. [CrossRef]
  • Cherelle, P., Grosu, V., Flynn, L., Junius, K., Moltedo, M., Vanderborght, B., & Lefeber, D. (2017). The Ankle Mimicking Prosthetic Foot 3—Locking mechanisms, actuator design, control and experiments with an amputee. Robotics and Autonomous Systems, 91, 327–336. [CrossRef]
  • Childers, W. L., & Takahashi, K. Z. (2018). Increasing prosthetic foot energy return affects whole-body mechanics during walking on level ground and slopes. Scientific Reports, 8(1). [CrossRef]
  • DeWees, T. (2019). Transtibial prosthetics. Orthotics and Prosthetics in Rehabilitation, 605–634. [CrossRef]
  • Dianlei Han, Rui Zhang, Qingqiu Cao, Lei Jiang, J. L. (2021). Research in the mechanical model of bionic foot intruding into sands with different physical characteristics. Journal of Terramechanics, 98. [CrossRef]
  • Emily S. Matijevich, Eric C. Honert, Yang Fan, Gilbert Lam, B. M. N. (2022). A foot and footwear mechanical power theoretical framework: Towards understanding energy storage and return in running footwear. Journal of Biomechanics, 141. [CrossRef]
  • Fylstra, B. L., Lee, I. C., Huang, S., Brandt, A., Lewek, M. D., & Huang, H. (Helen). (2020). Human-prosthesis coordination: A preliminary study exploring coordination with a powered ankle-foot prosthesis. Clinical Biomechanics, 80(January), 105171. [CrossRef]
  • Hoque, M. E., Riham, S. A. H., & Shuvo, M. A. A. (2023). A cost-effective prosthetic leg: Design and development. Hybrid Advances, 2(October 2022), 100017. [CrossRef]
  • Kieran M. Nichols, P. G. A. (2023). Sensitivity of lower-limb joint mechanics to prosthetic forefoot stiffness with a variable stiffness foot in level-ground walking. Journal of Biomechanics, 147. [CrossRef]
  • Lestari, W. D., & Adyono, N. (2022). Analysis of Ankle-Foot Design for Transtibial Prosthesis Components to Increase The Flexibility using the Finite Element Method. TEKNIK, 43(3), 272–279. [CrossRef]
  • Proebsting, E., Altenburg, B., Bellmann, M., Schmalz, T., & Krug, K. (2020). Effects on prosthetic foot ankle power on transfemoral amputee gait. Gait & Posture, 81, 285–286. [CrossRef]
  • ,Rui Zhang, Xumin Sun, Dianlei Han, Rui Zhang, Hua Zhang, Jia Ma, Lige Wen, M. Z. (2023). A bionic mechanical foot with adaptive variable postures travelling on sand. Journal of Terramechanics, 107. [CrossRef]
  • Schlafly, M., & Reed, K. B. (2020). Novel passive ankle-foot prosthesis mimics able-bodied ankle angles and ground reaction forces. Clinical Biomechanics, 72, 202–210. [CrossRef]
  • Umesh K. Dwivedi, Shashank Mishra, V. P. (2023). Rapid prototyping. In Advances in Biomedical Polymers and Composites (pp. 315–341). [CrossRef]
  • Yu, C. huang, Hung, Y. C., Lin, Y. H., Chen, G. X., Wei, S. H., Huang, C. H., & Chen, C. S. (2014). A 3D mathematical model to predict spinal joint and hip joint force for trans-tibial amputees with different SACH foot pylon adjustments. Gait and Posture, 40(4), 545–548. [CrossRef] Zelik, K. E., & Honert, E. C. (2018). Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment. Journal of Biomechanics, 75, 1–12. [CrossRef]
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Halk Sağlığı (Diğer), Engelli Bireyler
Bölüm Original Article
Yazarlar

Wahyu Dwi Lestari 0000-0002-5863-4968

Ndaru Adyono 0000-0001-8609-7090

Ahmad Khairul Faizin 0000-0003-3613-0328

Aridhotul Haqiyah 0000-0002-3368-9495

Wyke Kusmasari 0000-0003-4113-0226

Asep Nugroho 0000-0001-5021-1154

Kadek Heri Sanjaya 0000-0001-6855-039X

Erken Görünüm Tarihi 8 Şubat 2024
Yayımlanma Tarihi 25 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: (Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023)

Kaynak Göster

APA Lestari, W. D., Adyono, N., Khairul Faizin, A., Haqiyah, A., vd. (2024). Design and Manufacturing Ankle Foot Prosthetics for Patients with Transtibial Amputation. International Journal of Disabilities Sports and Health Sciences, 7((Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023), 54-59. https://doi.org/10.33438/ijdshs.1371603
AMA Lestari WD, Adyono N, Khairul Faizin A, Haqiyah A, Kusmasari W, Nugroho A, Sanjaya KH. Design and Manufacturing Ankle Foot Prosthetics for Patients with Transtibial Amputation. International Journal of Disabilities Sports and Health Sciences. Şubat 2024;7((Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023):54-59. doi:10.33438/ijdshs.1371603
Chicago Lestari, Wahyu Dwi, Ndaru Adyono, Ahmad Khairul Faizin, Aridhotul Haqiyah, Wyke Kusmasari, Asep Nugroho, ve Kadek Heri Sanjaya. “Design and Manufacturing Ankle Foot Prosthetics for Patients With Transtibial Amputation”. International Journal of Disabilities Sports and Health Sciences 7, sy. (Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023) (Şubat 2024): 54-59. https://doi.org/10.33438/ijdshs.1371603.
EndNote Lestari WD, Adyono N, Khairul Faizin A, Haqiyah A, Kusmasari W, Nugroho A, Sanjaya KH (01 Şubat 2024) Design and Manufacturing Ankle Foot Prosthetics for Patients with Transtibial Amputation. International Journal of Disabilities Sports and Health Sciences 7 (Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023) 54–59.
IEEE W. D. Lestari, “Design and Manufacturing Ankle Foot Prosthetics for Patients with Transtibial Amputation”, International Journal of Disabilities Sports and Health Sciences, c. 7, sy. (Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023), ss. 54–59, 2024, doi: 10.33438/ijdshs.1371603.
ISNAD Lestari, Wahyu Dwi vd. “Design and Manufacturing Ankle Foot Prosthetics for Patients With Transtibial Amputation”. International Journal of Disabilities Sports and Health Sciences 7/(Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023) (Şubat 2024), 54-59. https://doi.org/10.33438/ijdshs.1371603.
JAMA Lestari WD, Adyono N, Khairul Faizin A, Haqiyah A, Kusmasari W, Nugroho A, Sanjaya KH. Design and Manufacturing Ankle Foot Prosthetics for Patients with Transtibial Amputation. International Journal of Disabilities Sports and Health Sciences. 2024;7:54–59.
MLA Lestari, Wahyu Dwi vd. “Design and Manufacturing Ankle Foot Prosthetics for Patients With Transtibial Amputation”. International Journal of Disabilities Sports and Health Sciences, c. 7, sy. (Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023), 2024, ss. 54-59, doi:10.33438/ijdshs.1371603.
Vancouver Lestari WD, Adyono N, Khairul Faizin A, Haqiyah A, Kusmasari W, Nugroho A, Sanjaya KH. Design and Manufacturing Ankle Foot Prosthetics for Patients with Transtibial Amputation. International Journal of Disabilities Sports and Health Sciences. 2024;7((Special Issue 1): International Conference on Sport Science and Health (ICSSH, 2023):54-9.


Flag Counter