Araştırma Makalesi
BibTex RIS Kaynak Göster

Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM)

Yıl 2020, Cilt: 23 Sayı: 4, 1183 - 1188, 01.12.2020
https://doi.org/10.2339/politeknik.581574

Öz

This paper
reports on a study to compare the mechanical and deformation properties of
Ti6Al4V titanium alloy joints between a pulsed fiber laser source and a
tungsten inert gas (TIG) welding. Ti6Al4V alloy sheets - 0.8 mm
thick-deformation modifications were investigated via a 3D laser scanner
integrated to a portable-arm Coordinate Measurement Machine (CMM) and PC-DMIS
software. Deformation pattern, residual distortions, weld geometry,
microstructure and microhardnes properties of the joints produced with fiber
laser source and tungsten inert gas welding were compared. Compared with the
TIG, the welded by fiber laser has narrow heat affected zone (HAZ), small
overall residual distortion, fine microstructure, high Vickers hardness.  It can be concluded that fiber laser welding
is more suitable for welding the thin Ti6Al4V titanium alloy plate than TIG
welding; due to the small beam focus characteristics of fiber lasers enabiling
deep penetration welding.  

Kaynakça

  • 1. Akman E., Demir A., Canel E. and Sınmazçelik T., 2009. Laser welding of Ti6Al4V titanium alloys. J. Mater. Process. Technol., Volume 209, 8, 3705-3713. Doi: http://dx.doi:10.1016/j.jmatprotec.2008.08.026.2. Veiga C., Davim J. P. and Loureiro A. J. R., 2012. Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci., 32, 14-34.3. Yang X., Li S., Qi H., 2014. Ti–6Al–4V welded joints via electron beam welding: microstructure, fatigue properties, and fracture behaviour, Mater Sci Eng A, 597, 225–31. Doi: http://dx.doi.org/10.1016/j.msea.2013.12.089.4. Wu M., Xin R., Wang Y., Zhou Y., Wang K., Liu Q., 2016. Microstructure, texture and mechanical properties of commercial high-purity thick titanium plates jointed by electron beam welding. Mater Sci Eng A, 677, 50–7. Doi: http://dx.doi.org/10.1016/j.msea.2016.09.0305. Lu W., Li X., Lei Y., Shi Y., 2012. Study on the mechanical heterogeneity of electron beam welded thick TC4-DT joints, Mater Sci Eng A, 540, 135–41. Doi: http://dx.doi.org/10.1016/j.msea.2012.01.117.6. Karpagaraj A, Siva N, Sankaranarayanasamy K, 2015. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets, Mater Sci Eng A,640:180–9, Doi: http://dx.doi.org/10.1016/j.msea.2015.05.0567. Lathabai S., Jarvis B.L., Barton K.J., 2001. Comparison of keyhole andconventional gas tungsten arc welds in commercially puretitanium, Mater Sci Eng A, 299, 81–93. Doi: http://dx.doi.org/10.1016/S0921-5093(00)01408-88. Yunlian Q., Ju D., Quan H., Liying Z., 2000. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet, Mater Sci Eng A, 280, 177–81. Doi: http://dx.doi.org/10.1016/S0921-5093(99)00662-09. Gao X-L, Zhang L-J, Liu J, Zhang J-X, 2013. A comparative study ofpulsed Nd:YAG laser welding and TIG welding of thinTi6Al4V titanium alloy plate, Mater Sci Eng A, 559, 14–21.Doi: http://dx.doi.org/10.1016/j.msea.2012.06.016.10. Lu W., Shi Y., Lei Y., Li X., 2012. Effect of electron beam welding onthe microstructures and mechanical properties of thick TC4-DT alloy, Mater Des, 34, 509–15. Doi: http://dx.doi.org/10.1016/j.matdes.2011.09.004. 11. Short A.B., 2009. Gas tungsten arc welding of titanium alloys: are view, Mater Sci Technol, 25, 309–24, Doi: http://dx.doi.org/10.1179/174328408X389463.12. Gao X. L., Liu J., Zhang L. J. and Zhang J. X., 2014. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets, Mater. Charac., 93, 136-149. Doi: https://doi.org/10.1016/j.matchar.2014.04.005.13. Cao X. and Jahazi M., 2009. Effect of welding speed on butt joint quality of Ti–6Al–4V alloy welded using a high-power Nd:YAG laser, Opt Laser Eng., 47, 1231-1241. Doi: https://doi.org/10.1016/j.optlaseng.2009.05.010.14. Huang, H., Wang, J., Li, L., Ma, N., 2016. Prediction of laser welding induced deformation in thin sheets by efficient numerical modelling, J. Mater. Process. Technol., 227, 117–128. Doi: http://dx.doi.org/10.1016/j.jmatprotec.2015.08.002.15. Luo, Y., Murakawa, H., Ueda, Y., 1997. Prediction of welding deformation and residual stress by elastic FEM based on inherent strain. Second report: deformation and residual stress under multiple thermal cycles, J. Soc. Nav. Archit Jpn., 182, 783–793. Doi: http://dx.doi.org/10.2534/jjasnaoe1968.1998.323.16. Ma, N., Huang H., Murakawa H., 2015. Effect of jig constraint position and pitch on welding deformation, J. Mater. Process. Technol., 221, 154–162.Doi: https://doi.org/10.1016/j.jmatprotec.2015.02.02217. Junaid M. et al., Junaida M., Baig M.N., Shamir M., Khand F.N., Rehmana K., Haider J., 2017. A comparative study of pulsed laser and pulsed TIG welding of Ti-5Al-2.5Sn titanium alloy sheet, J. Mater. Process. Technol., 242, 24–38. Doi: https://doi.org/10.1016/j.jmatprotec.2016.11.018

Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM)

Yıl 2020, Cilt: 23 Sayı: 4, 1183 - 1188, 01.12.2020
https://doi.org/10.2339/politeknik.581574

Öz

This paper
reports on a study to compare the mechanical and deformation properties of
Ti6Al4V titanium alloy joints between a pulsed fiber laser source and a
tungsten inert gas (TIG) welding. Ti6Al4V alloy sheets - 0.8 mm
thick-deformation modifications were investigated via a 3D laser scanner
integrated to a portable-arm Coordinate Measurement Machine (CMM) and PC-DMIS
software. Deformation pattern, residual distortions, weld geometry,
microstructure and microhardnes properties of the joints produced with fiber
laser source and tungsten inert gas welding were compared. Compared with the
TIG, the welded by fiber laser has narrow heat affected zone (HAZ), small
overall residual distortion, fine microstructure, high Vickers hardness.  It can be concluded that fiber laser welding
is more suitable for welding the thin Ti6Al4V titanium alloy plate than TIG
welding; due to the small beam focus characteristics of fiber lasers enabiling
deep penetration welding.  

Kaynakça

  • 1. Akman E., Demir A., Canel E. and Sınmazçelik T., 2009. Laser welding of Ti6Al4V titanium alloys. J. Mater. Process. Technol., Volume 209, 8, 3705-3713. Doi: http://dx.doi:10.1016/j.jmatprotec.2008.08.026.2. Veiga C., Davim J. P. and Loureiro A. J. R., 2012. Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci., 32, 14-34.3. Yang X., Li S., Qi H., 2014. Ti–6Al–4V welded joints via electron beam welding: microstructure, fatigue properties, and fracture behaviour, Mater Sci Eng A, 597, 225–31. Doi: http://dx.doi.org/10.1016/j.msea.2013.12.089.4. Wu M., Xin R., Wang Y., Zhou Y., Wang K., Liu Q., 2016. Microstructure, texture and mechanical properties of commercial high-purity thick titanium plates jointed by electron beam welding. Mater Sci Eng A, 677, 50–7. Doi: http://dx.doi.org/10.1016/j.msea.2016.09.0305. Lu W., Li X., Lei Y., Shi Y., 2012. Study on the mechanical heterogeneity of electron beam welded thick TC4-DT joints, Mater Sci Eng A, 540, 135–41. Doi: http://dx.doi.org/10.1016/j.msea.2012.01.117.6. Karpagaraj A, Siva N, Sankaranarayanasamy K, 2015. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets, Mater Sci Eng A,640:180–9, Doi: http://dx.doi.org/10.1016/j.msea.2015.05.0567. Lathabai S., Jarvis B.L., Barton K.J., 2001. Comparison of keyhole andconventional gas tungsten arc welds in commercially puretitanium, Mater Sci Eng A, 299, 81–93. Doi: http://dx.doi.org/10.1016/S0921-5093(00)01408-88. Yunlian Q., Ju D., Quan H., Liying Z., 2000. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet, Mater Sci Eng A, 280, 177–81. Doi: http://dx.doi.org/10.1016/S0921-5093(99)00662-09. Gao X-L, Zhang L-J, Liu J, Zhang J-X, 2013. A comparative study ofpulsed Nd:YAG laser welding and TIG welding of thinTi6Al4V titanium alloy plate, Mater Sci Eng A, 559, 14–21.Doi: http://dx.doi.org/10.1016/j.msea.2012.06.016.10. Lu W., Shi Y., Lei Y., Li X., 2012. Effect of electron beam welding onthe microstructures and mechanical properties of thick TC4-DT alloy, Mater Des, 34, 509–15. Doi: http://dx.doi.org/10.1016/j.matdes.2011.09.004. 11. Short A.B., 2009. Gas tungsten arc welding of titanium alloys: are view, Mater Sci Technol, 25, 309–24, Doi: http://dx.doi.org/10.1179/174328408X389463.12. Gao X. L., Liu J., Zhang L. J. and Zhang J. X., 2014. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets, Mater. Charac., 93, 136-149. Doi: https://doi.org/10.1016/j.matchar.2014.04.005.13. Cao X. and Jahazi M., 2009. Effect of welding speed on butt joint quality of Ti–6Al–4V alloy welded using a high-power Nd:YAG laser, Opt Laser Eng., 47, 1231-1241. Doi: https://doi.org/10.1016/j.optlaseng.2009.05.010.14. Huang, H., Wang, J., Li, L., Ma, N., 2016. Prediction of laser welding induced deformation in thin sheets by efficient numerical modelling, J. Mater. Process. Technol., 227, 117–128. Doi: http://dx.doi.org/10.1016/j.jmatprotec.2015.08.002.15. Luo, Y., Murakawa, H., Ueda, Y., 1997. Prediction of welding deformation and residual stress by elastic FEM based on inherent strain. Second report: deformation and residual stress under multiple thermal cycles, J. Soc. Nav. Archit Jpn., 182, 783–793. Doi: http://dx.doi.org/10.2534/jjasnaoe1968.1998.323.16. Ma, N., Huang H., Murakawa H., 2015. Effect of jig constraint position and pitch on welding deformation, J. Mater. Process. Technol., 221, 154–162.Doi: https://doi.org/10.1016/j.jmatprotec.2015.02.02217. Junaid M. et al., Junaida M., Baig M.N., Shamir M., Khand F.N., Rehmana K., Haider J., 2017. A comparative study of pulsed laser and pulsed TIG welding of Ti-5Al-2.5Sn titanium alloy sheet, J. Mater. Process. Technol., 242, 24–38. Doi: https://doi.org/10.1016/j.jmatprotec.2016.11.018
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ahu Çelebi 0000-0003-0401-5384

Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 24 Haziran 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 23 Sayı: 4

Kaynak Göster

APA Çelebi, A. (2020). Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM). Politeknik Dergisi, 23(4), 1183-1188. https://doi.org/10.2339/politeknik.581574
AMA Çelebi A. Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM). Politeknik Dergisi. Aralık 2020;23(4):1183-1188. doi:10.2339/politeknik.581574
Chicago Çelebi, Ahu. “Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM)”. Politeknik Dergisi 23, sy. 4 (Aralık 2020): 1183-88. https://doi.org/10.2339/politeknik.581574.
EndNote Çelebi A (01 Aralık 2020) Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM). Politeknik Dergisi 23 4 1183–1188.
IEEE A. Çelebi, “Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM)”, Politeknik Dergisi, c. 23, sy. 4, ss. 1183–1188, 2020, doi: 10.2339/politeknik.581574.
ISNAD Çelebi, Ahu. “Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM)”. Politeknik Dergisi 23/4 (Aralık 2020), 1183-1188. https://doi.org/10.2339/politeknik.581574.
JAMA Çelebi A. Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM). Politeknik Dergisi. 2020;23:1183–1188.
MLA Çelebi, Ahu. “Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM)”. Politeknik Dergisi, c. 23, sy. 4, 2020, ss. 1183-8, doi:10.2339/politeknik.581574.
Vancouver Çelebi A. Deformation and Microstructural Analysis of Fiber Laser and TIG Welding of Thin Ti6Al4V Sheet by Coordinate Measurement Machine (CMM). Politeknik Dergisi. 2020;23(4):1183-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.